Properties

Label 336.e
Number of curves $4$
Conductor $336$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("e1")
 
E.isogeny_class()
 

Elliptic curves in class 336.e

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
336.e1 336c3 \([0, 1, 0, -4032, -99900]\) \(7080974546692/189\) \(193536\) \([2]\) \(192\) \(0.52819\)  
336.e2 336c4 \([0, 1, 0, -392, 228]\) \(6522128932/3720087\) \(3809369088\) \([4]\) \(192\) \(0.52819\)  
336.e3 336c2 \([0, 1, 0, -252, -1620]\) \(6940769488/35721\) \(9144576\) \([2, 2]\) \(96\) \(0.18162\)  
336.e4 336c1 \([0, 1, 0, -7, -52]\) \(-2725888/64827\) \(-1037232\) \([2]\) \(48\) \(-0.16496\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 336.e have rank \(0\).

Complex multiplication

The elliptic curves in class 336.e do not have complex multiplication.

Modular form 336.2.a.e

sage: E.q_eigenform(10)
 
\(q + q^{3} + 2 q^{5} - q^{7} + q^{9} + 6 q^{13} + 2 q^{15} - 2 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.