Show commands:
SageMath
E = EllipticCurve("e1")
E.isogeny_class()
Elliptic curves in class 336.e
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
336.e1 | 336c3 | \([0, 1, 0, -4032, -99900]\) | \(7080974546692/189\) | \(193536\) | \([2]\) | \(192\) | \(0.52819\) | |
336.e2 | 336c4 | \([0, 1, 0, -392, 228]\) | \(6522128932/3720087\) | \(3809369088\) | \([4]\) | \(192\) | \(0.52819\) | |
336.e3 | 336c2 | \([0, 1, 0, -252, -1620]\) | \(6940769488/35721\) | \(9144576\) | \([2, 2]\) | \(96\) | \(0.18162\) | |
336.e4 | 336c1 | \([0, 1, 0, -7, -52]\) | \(-2725888/64827\) | \(-1037232\) | \([2]\) | \(48\) | \(-0.16496\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 336.e have rank \(0\).
Complex multiplication
The elliptic curves in class 336.e do not have complex multiplication.Modular form 336.2.a.e
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.