Properties

Label 33462u
Number of curves $1$
Conductor $33462$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("u1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 33462u1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1\)
\(11\)\(1 - T\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 5 T^{2}\) 1.5.a
\(7\) \( 1 + 2 T + 7 T^{2}\) 1.7.c
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(19\) \( 1 + 2 T + 19 T^{2}\) 1.19.c
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 33462u do not have complex multiplication.

Modular form 33462.2.a.u

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{4} - q^{5} + 2 q^{7} - q^{8} + q^{10} - q^{11} - 2 q^{14} + q^{16} - 5 q^{17} - 5 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 33462u

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
33462.q1 33462u1 \([1, -1, 0, -39285, -2779763]\) \(54424690756969/4209228936\) \(518581214144136\) \([]\) \(145152\) \(1.5679\) \(\Gamma_0(N)\)-optimal