Properties

Label 33462.u
Number of curves $4$
Conductor $33462$
CM no
Rank $2$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("u1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 33462.u have rank \(2\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1\)
\(11\)\(1 - T\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 5 T^{2}\) 1.5.a
\(7\) \( 1 + 2 T + 7 T^{2}\) 1.7.c
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(19\) \( 1 + 2 T + 19 T^{2}\) 1.19.c
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 33462.u do not have complex multiplication.

Modular form 33462.2.a.u

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{4} - 2 q^{7} - q^{8} + q^{11} + 2 q^{14} + q^{16} - 6 q^{17} - 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 3 & 2 & 6 \\ 3 & 1 & 6 & 2 \\ 2 & 6 & 1 & 3 \\ 6 & 2 & 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 33462.u

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
33462.u1 33462k4 \([1, -1, 0, -223872, 10245860]\) \(13060888875/7086244\) \(673236275325939468\) \([2]\) \(442368\) \(2.1118\)  
33462.u2 33462k2 \([1, -1, 0, -173172, 27780624]\) \(4406910829875/7744\) \(1009227840192\) \([2]\) \(147456\) \(1.5625\)  
33462.u3 33462k3 \([1, -1, 0, -132612, -18428032]\) \(2714704875/21296\) \(2023249512624912\) \([2]\) \(221184\) \(1.7653\)  
33462.u4 33462k1 \([1, -1, 0, -10932, 426960]\) \(1108717875/45056\) \(5871871070208\) \([2]\) \(73728\) \(1.2160\) \(\Gamma_0(N)\)-optimal