Properties

Label 33462.t
Number of curves $4$
Conductor $33462$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("t1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 33462.t have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1\)
\(11\)\(1 + T\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 5 T^{2}\) 1.5.a
\(7\) \( 1 + 2 T + 7 T^{2}\) 1.7.c
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 + 6 T + 23 T^{2}\) 1.23.g
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 33462.t do not have complex multiplication.

Modular form 33462.2.a.t

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{4} - 2 q^{7} - q^{8} - q^{11} + 2 q^{14} + q^{16} + 6 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 33462.t

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
33462.t1 33462q3 \([1, -1, 0, -122472, 16464384]\) \(57736239625/255552\) \(899222005611072\) \([2]\) \(207360\) \(1.7217\)  
33462.t2 33462q4 \([1, -1, 0, -61632, 32781672]\) \(-7357983625/127552392\) \(-448824183550626312\) \([2]\) \(414720\) \(2.0683\)  
33462.t3 33462q1 \([1, -1, 0, -8397, -277263]\) \(18609625/1188\) \(4180267588068\) \([2]\) \(69120\) \(1.1724\) \(\Gamma_0(N)\)-optimal
33462.t4 33462q2 \([1, -1, 0, 6813, -1180737]\) \(9938375/176418\) \(-620769736828098\) \([2]\) \(138240\) \(1.5190\)