Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy=x^3-x^2-44901x-4895019\)
|
(homogenize, simplify) |
\(y^2z+xyz=x^3-x^2z-44901xz^2-4895019z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-718419x-313999634\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(634, 14555)$ | $0.97960700872192569680178310609$ | $\infty$ |
Integral points
\( \left(634, 14555\right) \), \( \left(634, -15189\right) \)
Invariants
Conductor: | $N$ | = | \( 33462 \) | = | $2 \cdot 3^{2} \cdot 11 \cdot 13^{2}$ |
|
Discriminant: | $\Delta$ | = | $-4605106634796096$ | = | $-1 \cdot 2^{6} \cdot 3^{6} \cdot 11^{2} \cdot 13^{8} $ |
|
j-invariant: | $j$ | = | \( -\frac{16835377}{7744} \) | = | $-1 \cdot 2^{-6} \cdot 11^{-2} \cdot 13 \cdot 109^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.7118846533575937420979789972$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.54738772928415226096863524897$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.8587093944863271$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.255565251116477$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $0.97960700872192569680178310609$ |
|
Real period: | $\Omega$ | ≈ | $0.16043196375834422770894542118$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 24 $ = $ 2\cdot2\cdot2\cdot3 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
Special value: | $ L'(E,1)$ | ≈ | $3.7718466268967035479732429478 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 3.771846627 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.160432 \cdot 0.979607 \cdot 24}{1^2} \\ & \approx 3.771846627\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 239616 |
|
$ \Gamma_0(N) $-optimal: | yes | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $2$ | $I_{6}$ | nonsplit multiplicative | 1 | 1 | 6 | 6 |
$3$ | $2$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 |
$11$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
$13$ | $3$ | $IV^{*}$ | additive | 1 | 2 | 8 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2G | 4.2.0.1 |
$3$ | 3B.1.2 | 3.8.0.2 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 132 = 2^{2} \cdot 3 \cdot 11 \), index $32$, genus $0$, and generators
$\left(\begin{array}{rr} 5 & 2 \\ 94 & 117 \end{array}\right),\left(\begin{array}{rr} 1 & 12 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 121 & 12 \\ 120 & 13 \end{array}\right),\left(\begin{array}{rr} 4 & 9 \\ 3 & 7 \end{array}\right),\left(\begin{array}{rr} 123 & 127 \\ 125 & 128 \end{array}\right),\left(\begin{array}{rr} 79 & 124 \\ 60 & 107 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 12 & 1 \end{array}\right),\left(\begin{array}{rr} 13 & 9 \\ 39 & 28 \end{array}\right),\left(\begin{array}{rr} 100 & 9 \\ 69 & 28 \end{array}\right)$.
The torsion field $K:=\Q(E[132])$ is a degree-$1900800$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/132\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | nonsplit multiplicative | $4$ | \( 1521 = 3^{2} \cdot 13^{2} \) |
$3$ | additive | $2$ | \( 1859 = 11 \cdot 13^{2} \) |
$11$ | split multiplicative | $12$ | \( 3042 = 2 \cdot 3^{2} \cdot 13^{2} \) |
$13$ | additive | $74$ | \( 198 = 2 \cdot 3^{2} \cdot 11 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
3.
Its isogeny class 33462.f
consists of 2 curves linked by isogenies of
degree 3.
Twists
The minimal quadratic twist of this elliptic curve is 3718.a1, its twist by $-39$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{-3}) \) | \(\Z/3\Z\) | not in database |
$3$ | 3.1.676.1 | \(\Z/2\Z\) | not in database |
$3$ | 3.1.61347.1 | \(\Z/3\Z\) | not in database |
$6$ | 6.0.1827904.2 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$6$ | 6.0.11290363227.1 | \(\Z/3\Z \oplus \Z/3\Z\) | not in database |
$6$ | 6.0.12338352.1 | \(\Z/6\Z\) | not in database |
$9$ | 9.1.14776104808251072.4 | \(\Z/6\Z\) | not in database |
$12$ | deg 12 | \(\Z/4\Z\) | not in database |
$12$ | 12.0.2435758881214464.2 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$18$ | 18.0.402636321236210103776574517248.2 | \(\Z/9\Z\) | not in database |
$18$ | 18.0.5894998379219352129392827507027968.4 | \(\Z/3\Z \oplus \Z/6\Z\) | not in database |
$18$ | 18.0.13973329491482908751153368905547776.1 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | nonsplit | add | ord | ord | split | add | ord | ord | ss | ord | ord | ord | ord | ord | ord |
$\lambda$-invariant(s) | 9 | - | 1 | 1 | 2 | - | 1 | 1 | 1,1 | 1 | 1 | 1 | 1 | 1 | 1 |
$\mu$-invariant(s) | 0 | - | 0 | 0 | 0 | - | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.