Learn more

Refine search


Results (1-50 of 57 matches)

Next   Download to        
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation
3330.a1 3330.a \( 2 \cdot 3^{2} \cdot 5 \cdot 37 \) $1$ $\mathsf{trivial}$ $0.863831805$ $[1, -1, 0, 930, -4204]$ \(y^2+xy=x^3-x^2+930x-4204\)
3330.b1 3330.b \( 2 \cdot 3^{2} \cdot 5 \cdot 37 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -1170, -15404]$ \(y^2+xy=x^3-x^2-1170x-15404\)
3330.c1 3330.c \( 2 \cdot 3^{2} \cdot 5 \cdot 37 \) $1$ $\Z/2\Z$ $10.18135170$ $[1, -1, 0, -3069045, -2068673675]$ \(y^2+xy=x^3-x^2-3069045x-2068673675\)
3330.c2 3330.c \( 2 \cdot 3^{2} \cdot 5 \cdot 37 \) $1$ $\Z/2\Z$ $5.090675851$ $[1, -1, 0, -2728125, 1727522941]$ \(y^2+xy=x^3-x^2-2728125x+1727522941\)
3330.c3 3330.c \( 2 \cdot 3^{2} \cdot 5 \cdot 37 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $2.545337925$ $[1, -1, 0, -263925, -5795339]$ \(y^2+xy=x^3-x^2-263925x-5795339\)
3330.c4 3330.c \( 2 \cdot 3^{2} \cdot 5 \cdot 37 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $5.090675851$ $[1, -1, 0, -191925, -32248139]$ \(y^2+xy=x^3-x^2-191925x-32248139\)
3330.c5 3330.c \( 2 \cdot 3^{2} \cdot 5 \cdot 37 \) $1$ $\Z/2\Z$ $2.545337925$ $[1, -1, 0, -7605, -876875]$ \(y^2+xy=x^3-x^2-7605x-876875\)
3330.c6 3330.c \( 2 \cdot 3^{2} \cdot 5 \cdot 37 \) $1$ $\Z/2\Z$ $5.090675851$ $[1, -1, 0, 1048275, -46998419]$ \(y^2+xy=x^3-x^2+1048275x-46998419\)
3330.d1 3330.d \( 2 \cdot 3^{2} \cdot 5 \cdot 37 \) $1$ $\Z/6\Z$ $6.825717276$ $[1, -1, 0, -47475, 3993381]$ \(y^2+xy=x^3-x^2-47475x+3993381\)
3330.d2 3330.d \( 2 \cdot 3^{2} \cdot 5 \cdot 37 \) $1$ $\Z/6\Z$ $3.412858638$ $[1, -1, 0, -47295, 4025025]$ \(y^2+xy=x^3-x^2-47295x+4025025\)
3330.d3 3330.d \( 2 \cdot 3^{2} \cdot 5 \cdot 37 \) $1$ $\Z/2\Z$ $2.275239092$ $[1, -1, 0, -675, 3861]$ \(y^2+xy=x^3-x^2-675x+3861\)
3330.d4 3330.d \( 2 \cdot 3^{2} \cdot 5 \cdot 37 \) $1$ $\Z/2\Z$ $1.137619546$ $[1, -1, 0, 2205, 26325]$ \(y^2+xy=x^3-x^2+2205x+26325\)
3330.e1 3330.e \( 2 \cdot 3^{2} \cdot 5 \cdot 37 \) $1$ $\mathsf{trivial}$ $0.414237448$ $[1, -1, 0, -7785, 266341]$ \(y^2+xy=x^3-x^2-7785x+266341\)
3330.f1 3330.f \( 2 \cdot 3^{2} \cdot 5 \cdot 37 \) $1$ $\mathsf{trivial}$ $0.941396702$ $[1, -1, 0, -2529, -63747]$ \(y^2+xy=x^3-x^2-2529x-63747\)
3330.g1 3330.g \( 2 \cdot 3^{2} \cdot 5 \cdot 37 \) $1$ $\mathsf{trivial}$ $0.214967152$ $[1, -1, 0, -560994, 164964500]$ \(y^2+xy=x^3-x^2-560994x+164964500\)
3330.h1 3330.h \( 2 \cdot 3^{2} \cdot 5 \cdot 37 \) $0$ $\Z/3\Z$ $1$ $[1, -1, 0, -66276324, 207692300880]$ \(y^2+xy=x^3-x^2-66276324x+207692300880\)
3330.h2 3330.h \( 2 \cdot 3^{2} \cdot 5 \cdot 37 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -750564, 334125648]$ \(y^2+xy=x^3-x^2-750564x+334125648\)
3330.i1 3330.i \( 2 \cdot 3^{2} \cdot 5 \cdot 37 \) $1$ $\Z/2\Z$ $4.886493116$ $[1, -1, 0, -5739, -165907]$ \(y^2+xy=x^3-x^2-5739x-165907\)
3330.i2 3330.i \( 2 \cdot 3^{2} \cdot 5 \cdot 37 \) $1$ $\Z/2\Z$ $2.443246558$ $[1, -1, 0, -339, -2827]$ \(y^2+xy=x^3-x^2-339x-2827\)
3330.j1 3330.j \( 2 \cdot 3^{2} \cdot 5 \cdot 37 \) $1$ $\Z/2\Z$ $0.843748578$ $[1, -1, 0, -190314, 31995220]$ \(y^2+xy=x^3-x^2-190314x+31995220\)
3330.j2 3330.j \( 2 \cdot 3^{2} \cdot 5 \cdot 37 \) $1$ $\Z/2\Z$ $0.421874289$ $[1, -1, 0, -10314, 639220]$ \(y^2+xy=x^3-x^2-10314x+639220\)
3330.k1 3330.k \( 2 \cdot 3^{2} \cdot 5 \cdot 37 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -3686379, 2725178885]$ \(y^2+xy=x^3-x^2-3686379x+2725178885\)
3330.k2 3330.k \( 2 \cdot 3^{2} \cdot 5 \cdot 37 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -230379, 42631685]$ \(y^2+xy=x^3-x^2-230379x+42631685\)
3330.l1 3330.l \( 2 \cdot 3^{2} \cdot 5 \cdot 37 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -459, -3645]$ \(y^2+xy=x^3-x^2-459x-3645\)
3330.l2 3330.l \( 2 \cdot 3^{2} \cdot 5 \cdot 37 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -9, -135]$ \(y^2+xy=x^3-x^2-9x-135\)
3330.m1 3330.m \( 2 \cdot 3^{2} \cdot 5 \cdot 37 \) $0$ $\Z/6\Z$ $1$ $[1, -1, 1, -94388, 5005847]$ \(y^2+xy+y=x^3-x^2-94388x+5005847\)
3330.m2 3330.m \( 2 \cdot 3^{2} \cdot 5 \cdot 37 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -47813, -4011883]$ \(y^2+xy+y=x^3-x^2-47813x-4011883\)
3330.m3 3330.m \( 2 \cdot 3^{2} \cdot 5 \cdot 37 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -2813, -69883]$ \(y^2+xy+y=x^3-x^2-2813x-69883\)
3330.m4 3330.m \( 2 \cdot 3^{2} \cdot 5 \cdot 37 \) $0$ $\Z/6\Z$ $1$ $[1, -1, 1, 20812, 582167]$ \(y^2+xy+y=x^3-x^2+20812x+582167\)
3330.n1 3330.n \( 2 \cdot 3^{2} \cdot 5 \cdot 37 \) $1$ $\mathsf{trivial}$ $0.164889742$ $[1, -1, 1, -62333, -6089019]$ \(y^2+xy+y=x^3-x^2-62333x-6089019\)
3330.o1 3330.o \( 2 \cdot 3^{2} \cdot 5 \cdot 37 \) $1$ $\Z/2\Z$ $0.625365428$ $[1, -1, 1, -638, 6357]$ \(y^2+xy+y=x^3-x^2-638x+6357\)
3330.o2 3330.o \( 2 \cdot 3^{2} \cdot 5 \cdot 37 \) $1$ $\Z/2\Z$ $0.312682714$ $[1, -1, 1, -38, 117]$ \(y^2+xy+y=x^3-x^2-38x+117\)
3330.p1 3330.p \( 2 \cdot 3^{2} \cdot 5 \cdot 37 \) $1$ $\mathsf{trivial}$ $0.181632255$ $[1, -1, 1, 112, 627]$ \(y^2+xy+y=x^3-x^2+112x+627\)
3330.q1 3330.q \( 2 \cdot 3^{2} \cdot 5 \cdot 37 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, 1822, 15081]$ \(y^2+xy+y=x^3-x^2+1822x+15081\)
3330.r1 3330.r \( 2 \cdot 3^{2} \cdot 5 \cdot 37 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -409598, -100796019]$ \(y^2+xy+y=x^3-x^2-409598x-100796019\)
3330.r2 3330.r \( 2 \cdot 3^{2} \cdot 5 \cdot 37 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -25598, -1570419]$ \(y^2+xy+y=x^3-x^2-25598x-1570419\)
3330.s1 3330.s \( 2 \cdot 3^{2} \cdot 5 \cdot 37 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -3224862977, 70488777789969]$ \(y^2+xy+y=x^3-x^2-3224862977x+70488777789969\)
3330.s2 3330.s \( 2 \cdot 3^{2} \cdot 5 \cdot 37 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, -1, 1, -201554177, 1101422182929]$ \(y^2+xy+y=x^3-x^2-201554177x+1101422182929\)
3330.s3 3330.s \( 2 \cdot 3^{2} \cdot 5 \cdot 37 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -198144257, 1140484862481]$ \(y^2+xy+y=x^3-x^2-198144257x+1140484862481\)
3330.s4 3330.s \( 2 \cdot 3^{2} \cdot 5 \cdot 37 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -12810497, 16599007761]$ \(y^2+xy+y=x^3-x^2-12810497x+16599007761\)
3330.t1 3330.t \( 2 \cdot 3^{2} \cdot 5 \cdot 37 \) $1$ $\mathsf{trivial}$ $0.072682605$ $[1, -1, 1, 103, 121]$ \(y^2+xy+y=x^3-x^2+103x+121\)
3330.u1 3330.u \( 2 \cdot 3^{2} \cdot 5 \cdot 37 \) $1$ $\Z/3\Z$ $0.193322855$ $[1, -1, 1, -63797, 6225869]$ \(y^2+xy+y=x^3-x^2-63797x+6225869\)
3330.u2 3330.u \( 2 \cdot 3^{2} \cdot 5 \cdot 37 \) $1$ $\mathsf{trivial}$ $0.064440951$ $[1, -1, 1, 1138, 40061]$ \(y^2+xy+y=x^3-x^2+1138x+40061\)
3330.v1 3330.v \( 2 \cdot 3^{2} \cdot 5 \cdot 37 \) $1$ $\mathsf{trivial}$ $4.894564499$ $[1, -1, 1, -482, -3949]$ \(y^2+xy+y=x^3-x^2-482x-3949\)
3330.v2 3330.v \( 2 \cdot 3^{2} \cdot 5 \cdot 37 \) $1$ $\Z/3\Z$ $1.631521499$ $[1, -1, 1, -167, -9241]$ \(y^2+xy+y=x^3-x^2-167x-9241\)
3330.v3 3330.v \( 2 \cdot 3^{2} \cdot 5 \cdot 37 \) $1$ $\Z/3\Z$ $0.543840499$ $[1, -1, 1, 1498, 248501]$ \(y^2+xy+y=x^3-x^2+1498x+248501\)
3330.w1 3330.w \( 2 \cdot 3^{2} \cdot 5 \cdot 37 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -3557, 82531]$ \(y^2+xy+y=x^3-x^2-3557x+82531\)
3330.w2 3330.w \( 2 \cdot 3^{2} \cdot 5 \cdot 37 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, -1, 1, -227, 1279]$ \(y^2+xy+y=x^3-x^2-227x+1279\)
3330.w3 3330.w \( 2 \cdot 3^{2} \cdot 5 \cdot 37 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -47, -89]$ \(y^2+xy+y=x^3-x^2-47x-89\)
3330.w4 3330.w \( 2 \cdot 3^{2} \cdot 5 \cdot 37 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, 223, 5419]$ \(y^2+xy+y=x^3-x^2+223x+5419\)
Next   Download to