Properties

Label 332592.be
Number of curves $4$
Conductor $332592$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("be1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 332592.be have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(13\)\(1\)
\(41\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - 2 T + 5 T^{2}\) 1.5.ac
\(7\) \( 1 - 4 T + 7 T^{2}\) 1.7.ae
\(11\) \( 1 + 4 T + 11 T^{2}\) 1.11.e
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 332592.be do not have complex multiplication.

Modular form 332592.2.a.be

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} + 2 q^{5} + 4 q^{7} + q^{9} - 4 q^{11} - 2 q^{15} + 2 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 332592.be

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
332592.be1 332592be3 \([0, -1, 0, -1187112, 498206448]\) \(9357915116017/538002\) \(10636627540451328\) \([2]\) \(5308416\) \(2.1388\)  
332592.be2 332592be2 \([0, -1, 0, -78472, 6857200]\) \(2703045457/544644\) \(10767943929839616\) \([2, 2]\) \(2654208\) \(1.7922\)  
332592.be3 332592be1 \([0, -1, 0, -24392, -1362960]\) \(81182737/5904\) \(116725679456256\) \([2]\) \(1327104\) \(1.4456\) \(\Gamma_0(N)\)-optimal
332592.be4 332592be4 \([0, -1, 0, 164888, 40732912]\) \(25076571983/50863698\) \(-1005606319225577472\) \([2]\) \(5308416\) \(2.1388\)