Show commands: SageMath
Rank
The elliptic curves in class 331200ph have rank \(1\).
L-function data
Bad L-factors: |
| ||||||||||||||||||||||||
Good L-factors: |
| ||||||||||||||||||||||||
See L-function page for more information |
Complex multiplication
The elliptic curves in class 331200ph do not have complex multiplication.Modular form 331200.2.a.ph
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 331200ph
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
331200.ph1 | 331200ph1 | \([0, 0, 0, -41700, -14699000]\) | \(-687518464/7604375\) | \(-88697430000000000\) | \([]\) | \(3317760\) | \(1.9340\) | \(\Gamma_0(N)\)-optimal |
331200.ph2 | 331200ph2 | \([0, 0, 0, 372300, 379429000]\) | \(489277573376/5615234375\) | \(-65496093750000000000\) | \([]\) | \(9953280\) | \(2.4833\) |