Properties

Label 331200fm
Number of curves $2$
Conductor $331200$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("fm1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 331200fm have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1\)
\(23\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 2 T + 7 T^{2}\) 1.7.c
\(11\) \( 1 - 6 T + 11 T^{2}\) 1.11.ag
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 331200fm do not have complex multiplication.

Modular form 331200.2.a.fm

Copy content sage:E.q_eigenform(10)
 
\(q - 2 q^{7} + 6 q^{11} - 2 q^{13} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 331200fm

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
331200.fm2 331200fm1 \([0, 0, 0, -21900, 2698000]\) \(-389017/828\) \(-2472394752000000\) \([2]\) \(1572864\) \(1.6426\) \(\Gamma_0(N)\)-optimal
331200.fm1 331200fm2 \([0, 0, 0, -453900, 117610000]\) \(3463512697/3174\) \(9477513216000000\) \([2]\) \(3145728\) \(1.9892\)