Properties

Label 331200.mr
Number of curves $2$
Conductor $331200$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("mr1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 331200.mr have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1\)
\(23\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 - 2 T + 7 T^{2}\) 1.7.ac
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 - 8 T + 17 T^{2}\) 1.17.ai
\(19\) \( 1 + 6 T + 19 T^{2}\) 1.19.g
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 331200.mr do not have complex multiplication.

Modular form 331200.2.a.mr

Copy content sage:E.q_eigenform(10)
 
\(q + 2 q^{7} + 2 q^{13} + 8 q^{17} - 6 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 331200.mr

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
331200.mr1 331200mr2 \([0, 0, 0, -41983500, -104704666000]\) \(10963069081334500/1156923\) \(863638391808000000\) \([2]\) \(16515072\) \(2.8699\)  
331200.mr2 331200mr1 \([0, 0, 0, -2617500, -1644478000]\) \(-10627137250000/110008287\) \(-20530186553088000000\) \([2]\) \(8257536\) \(2.5233\) \(\Gamma_0(N)\)-optimal