Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3-6771x+181474\)
|
(homogenize, simplify) |
\(y^2z=x^3-6771xz^2+181474z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-6771x+181474\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{4}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(-85, 378)$ | $2.2872389138286121393685997156$ | $\infty$ |
$(131, 1242)$ | $0$ | $4$ |
Integral points
\((-85,\pm 378)\), \((-30,\pm 598)\), \( \left(62, 0\right) \), \((131,\pm 1242)\)
Invariants
Conductor: | $N$ | = | \( 3312 \) | = | $2^{4} \cdot 3^{2} \cdot 23$ |
|
Discriminant: | $\Delta$ | = | $5640305052672$ | = | $2^{10} \cdot 3^{9} \cdot 23^{4} $ |
|
j-invariant: | $j$ | = | \( \frac{45989074372}{7555707} \) | = | $2^{2} \cdot 3^{-3} \cdot 23^{-4} \cdot 37^{3} \cdot 61^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.1683771781829128001142593337$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.041448383382236863235609947358$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.9626262468353085$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.69751643060364$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $2.2872389138286121393685997156$ |
|
Real period: | $\Omega$ | ≈ | $0.72639343004475806665682688148$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 32 $ = $ 2\cdot2^{2}\cdot2^{2} $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $4$ |
|
Special value: | $ L'(E,1)$ | ≈ | $3.3228706398956247916416490390 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 3.322870640 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.726393 \cdot 2.287239 \cdot 32}{4^2} \\ & \approx 3.322870640\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 6144 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $2$ | $I_{2}^{*}$ | additive | 1 | 4 | 10 | 0 |
$3$ | $4$ | $I_{3}^{*}$ | additive | -1 | 2 | 9 | 3 |
$23$ | $4$ | $I_{4}$ | split multiplicative | -1 | 1 | 4 | 4 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 4.12.0.7 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 552 = 2^{3} \cdot 3 \cdot 23 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 364 & 551 \\ 161 & 546 \end{array}\right),\left(\begin{array}{rr} 97 & 8 \\ 388 & 33 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 7 & 6 \\ 546 & 547 \end{array}\right),\left(\begin{array}{rr} 211 & 210 \\ 82 & 355 \end{array}\right),\left(\begin{array}{rr} 480 & 199 \\ 455 & 408 \end{array}\right),\left(\begin{array}{rr} 545 & 8 \\ 544 & 9 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right)$.
The torsion field $K:=\Q(E[552])$ is a degree-$410370048$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/552\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $2$ | \( 9 = 3^{2} \) |
$3$ | additive | $2$ | \( 368 = 2^{4} \cdot 23 \) |
$23$ | split multiplicative | $24$ | \( 144 = 2^{4} \cdot 3^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 3312.e
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 552.c1, its twist by $12$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{4}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{3}) \) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$4$ | 4.4.914112.1 | \(\Z/8\Z\) | not in database |
$8$ | 8.0.2985984.1 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.1485512441856.14 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$8$ | 8.8.13369611976704.1 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$8$ | 8.2.30948175872.2 | \(\Z/12\Z\) | not in database |
$16$ | deg 16 | \(\Z/16\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | add | add | ord | ord | ord | ord | ord | ss | split | ord | ss | ord | ord | ord | ord |
$\lambda$-invariant(s) | - | - | 1 | 1 | 1 | 1 | 1 | 3,1 | 2 | 1 | 1,1 | 1 | 1 | 1 | 1 |
$\mu$-invariant(s) | - | - | 0 | 0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.