Properties

Label 330330fj
Number of curves $4$
Conductor $330330$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("fj1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 330330fj have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1 - T\)
\(5\)\(1 + T\)
\(7\)\(1 + T\)
\(11\)\(1\)
\(13\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(19\) \( 1 + 8 T + 19 T^{2}\) 1.19.i
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 330330fj do not have complex multiplication.

Modular form 330330.2.a.fj

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} + q^{3} + q^{4} - q^{5} + q^{6} - q^{7} + q^{8} + q^{9} - q^{10} + q^{12} - q^{13} - q^{14} - q^{15} + q^{16} + q^{18} - 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 330330fj

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
330330.fj3 330330fj1 \([1, 0, 0, -91781, 4797981]\) \(48264326765929/22299191460\) \(39504377922069060\) \([2]\) \(3732480\) \(1.8793\) \(\Gamma_0(N)\)-optimal
330330.fj4 330330fj2 \([1, 0, 0, 323249, 36257255]\) \(2108526614950391/1540302022350\) \(-2728738991016388350\) \([2]\) \(7464960\) \(2.2258\)  
330330.fj1 330330fj3 \([1, 0, 0, -6228296, 5982243840]\) \(15082569606665230489/7751016000\) \(13731397655976000\) \([2]\) \(11197440\) \(2.4286\)  
330330.fj2 330330fj4 \([1, 0, 0, -6194416, 6050552696]\) \(-14837772556740428569/342100087875000\) \(-606051173775922875000\) \([2]\) \(22394880\) \(2.7752\)