Show commands: SageMath
Rank
The elliptic curves in class 3300r have rank \(1\).
L-function data
Bad L-factors: |
| ||||||||||||||||||||||||
Good L-factors: |
| ||||||||||||||||||||||||
See L-function page for more information |
Complex multiplication
The elliptic curves in class 3300r do not have complex multiplication.Modular form 3300.2.a.r
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 3300r
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
3300.l2 | 3300r1 | \([0, 1, 0, -153, 648]\) | \(199344128/9801\) | \(19602000\) | \([2]\) | \(768\) | \(0.15859\) | \(\Gamma_0(N)\)-optimal |
3300.l1 | 3300r2 | \([0, 1, 0, -428, -2652]\) | \(271593488/72171\) | \(2309472000\) | \([2]\) | \(1536\) | \(0.50516\) |