Show commands: SageMath
Rank
The elliptic curves in class 3300d have rank \(1\).
L-function data
Bad L-factors: |
| ||||||||||||||||||||||||
Good L-factors: |
| ||||||||||||||||||||||||
See L-function page for more information |
Complex multiplication
The elliptic curves in class 3300d do not have complex multiplication.Modular form 3300.2.a.d
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 3300d
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
3300.f2 | 3300d1 | \([0, -1, 0, 67, -138]\) | \(131072/99\) | \(-24750000\) | \([2]\) | \(768\) | \(0.10685\) | \(\Gamma_0(N)\)-optimal |
3300.f1 | 3300d2 | \([0, -1, 0, -308, -888]\) | \(810448/363\) | \(1452000000\) | \([2]\) | \(1536\) | \(0.45343\) |