Properties

Label 3300.h
Number of curves $4$
Conductor $3300$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("h1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 3300.h have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(5\)\(1\)
\(11\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 - 4 T + 7 T^{2}\) 1.7.ae
\(13\) \( 1 - 4 T + 13 T^{2}\) 1.13.ae
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(19\) \( 1 - 2 T + 19 T^{2}\) 1.19.ac
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 29 T^{2}\) 1.29.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 3300.h do not have complex multiplication.

Modular form 3300.2.a.h

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} + 4 q^{7} + q^{9} - q^{11} + 4 q^{13} + 6 q^{17} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 3 & 6 & 2 \\ 3 & 1 & 2 & 6 \\ 6 & 2 & 1 & 3 \\ 2 & 6 & 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 3300.h

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
3300.h1 3300c4 \([0, -1, 0, -38908, -1591688]\) \(1628514404944/664335375\) \(2657341500000000\) \([2]\) \(20736\) \(1.6573\)  
3300.h2 3300c2 \([0, -1, 0, -17908, 928312]\) \(158792223184/16335\) \(65340000000\) \([2]\) \(6912\) \(1.1080\)  
3300.h3 3300c1 \([0, -1, 0, -1033, 17062]\) \(-488095744/200475\) \(-50118750000\) \([2]\) \(3456\) \(0.76145\) \(\Gamma_0(N)\)-optimal
3300.h4 3300c3 \([0, -1, 0, 7967, -185438]\) \(223673040896/187171875\) \(-46792968750000\) \([2]\) \(10368\) \(1.3108\)