Learn more

Refine search


Results (34 matches)

  displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
3300.a1 3300.a \( 2^{2} \cdot 3 \cdot 5^{2} \cdot 11 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -7708, -286088]$ \(y^2=x^3-x^2-7708x-286088\) 132.2.0.? $[ ]$
3300.b1 3300.b \( 2^{2} \cdot 3 \cdot 5^{2} \cdot 11 \) $1$ $\Z/2\Z$ $9.764514259$ $[0, -1, 0, -6249908, -6011849688]$ \(y^2=x^3-x^2-6249908x-6011849688\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 12.24.0.h.1, 15.8.0-3.a.1.1, $\ldots$ $[(81253/2, 22976075/2)]$
3300.b2 3300.b \( 2^{2} \cdot 3 \cdot 5^{2} \cdot 11 \) $1$ $\Z/2\Z$ $4.882257129$ $[0, -1, 0, -390533, -93880938]$ \(y^2=x^3-x^2-390533x-93880938\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 12.24.0.i.1, 15.8.0-3.a.1.1, $\ldots$ $[(782, 8850)]$
3300.b3 3300.b \( 2^{2} \cdot 3 \cdot 5^{2} \cdot 11 \) $1$ $\Z/2\Z$ $3.254838086$ $[0, -1, 0, -78908, -7829688]$ \(y^2=x^3-x^2-78908x-7829688\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 12.24.0.h.1, 15.8.0-3.a.1.2, $\ldots$ $[(-167, 814)]$
3300.b4 3300.b \( 2^{2} \cdot 3 \cdot 5^{2} \cdot 11 \) $1$ $\Z/2\Z$ $1.627419043$ $[0, -1, 0, 5467, -573438]$ \(y^2=x^3-x^2+5467x-573438\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 12.24.0.i.1, 15.8.0-3.a.1.2, $\ldots$ $[(602, 14850)]$
3300.c1 3300.c \( 2^{2} \cdot 3 \cdot 5^{2} \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -25333, -1270838]$ \(y^2=x^3-x^2-25333x-1270838\) 2.3.0.a.1, 4.6.0.e.1, 10.6.0.a.1, 12.12.0.n.1, 20.12.0.k.1, $\ldots$ $[ ]$
3300.c2 3300.c \( 2^{2} \cdot 3 \cdot 5^{2} \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, 50292, -7472088]$ \(y^2=x^3-x^2+50292x-7472088\) 2.3.0.a.1, 4.6.0.e.1, 20.12.0.l.1, 24.12.0.bu.1, 88.12.0.?, $\ldots$ $[ ]$
3300.d1 3300.d \( 2^{2} \cdot 3 \cdot 5^{2} \cdot 11 \) $1$ $\mathsf{trivial}$ $1.164239978$ $[0, -1, 0, 6667, 129537]$ \(y^2=x^3-x^2+6667x+129537\) 6.2.0.a.1 $[(-8, 275)]$
3300.e1 3300.e \( 2^{2} \cdot 3 \cdot 5^{2} \cdot 11 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -5508, 159192]$ \(y^2=x^3-x^2-5508x+159192\) 3.4.0.a.1, 15.8.0-3.a.1.2, 132.8.0.?, 660.16.0.? $[ ]$
3300.e2 3300.e \( 2^{2} \cdot 3 \cdot 5^{2} \cdot 11 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -2508, 328152]$ \(y^2=x^3-x^2-2508x+328152\) 3.4.0.a.1, 15.8.0-3.a.1.1, 132.8.0.?, 660.16.0.? $[ ]$
3300.f1 3300.f \( 2^{2} \cdot 3 \cdot 5^{2} \cdot 11 \) $1$ $\Z/2\Z$ $0.884604281$ $[0, -1, 0, -308, -888]$ \(y^2=x^3-x^2-308x-888\) 2.3.0.a.1, 12.6.0.a.1, 44.6.0.c.1, 132.12.0.? $[(22, 50)]$
3300.f2 3300.f \( 2^{2} \cdot 3 \cdot 5^{2} \cdot 11 \) $1$ $\Z/2\Z$ $0.442302140$ $[0, -1, 0, 67, -138]$ \(y^2=x^3-x^2+67x-138\) 2.3.0.a.1, 12.6.0.b.1, 22.6.0.a.1, 132.12.0.? $[(7, 25)]$
3300.g1 3300.g \( 2^{2} \cdot 3 \cdot 5^{2} \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -10708, -310088]$ \(y^2=x^3-x^2-10708x-310088\) 2.3.0.a.1, 20.6.0.c.1, 44.6.0.e.1, 220.12.0.? $[ ]$
3300.g2 3300.g \( 2^{2} \cdot 3 \cdot 5^{2} \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -3833, 88662]$ \(y^2=x^3-x^2-3833x+88662\) 2.3.0.a.1, 10.6.0.a.1, 44.6.0.e.1, 220.12.0.? $[ ]$
3300.h1 3300.h \( 2^{2} \cdot 3 \cdot 5^{2} \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -38908, -1591688]$ \(y^2=x^3-x^2-38908x-1591688\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 12.24.0-6.a.1.10, 15.8.0-3.a.1.1, $\ldots$ $[ ]$
3300.h2 3300.h \( 2^{2} \cdot 3 \cdot 5^{2} \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -17908, 928312]$ \(y^2=x^3-x^2-17908x+928312\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 12.24.0-6.a.1.4, 15.8.0-3.a.1.2, $\ldots$ $[ ]$
3300.h3 3300.h \( 2^{2} \cdot 3 \cdot 5^{2} \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -1033, 17062]$ \(y^2=x^3-x^2-1033x+17062\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 12.24.0-6.a.1.8, 15.8.0-3.a.1.2, $\ldots$ $[ ]$
3300.h4 3300.h \( 2^{2} \cdot 3 \cdot 5^{2} \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, 7967, -185438]$ \(y^2=x^3-x^2+7967x-185438\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 12.24.0-6.a.1.2, 15.8.0-3.a.1.1, $\ldots$ $[ ]$
3300.i1 3300.i \( 2^{2} \cdot 3 \cdot 5^{2} \cdot 11 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, 292, -2088]$ \(y^2=x^3-x^2+292x-2088\) 132.2.0.? $[ ]$
3300.j1 3300.j \( 2^{2} \cdot 3 \cdot 5^{2} \cdot 11 \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 0, 12, -12]$ \(y^2=x^3+x^2+12x-12\) 132.2.0.? $[ ]$
3300.k1 3300.k \( 2^{2} \cdot 3 \cdot 5^{2} \cdot 11 \) $1$ $\Z/2\Z$ $0.258962551$ $[0, 1, 0, -32308, 2224388]$ \(y^2=x^3+x^2-32308x+2224388\) 2.3.0.a.1, 12.6.0.a.1, 44.6.0.c.1, 132.12.0.? $[(92, 198)]$
3300.k2 3300.k \( 2^{2} \cdot 3 \cdot 5^{2} \cdot 11 \) $1$ $\Z/2\Z$ $0.129481275$ $[0, 1, 0, -1933, 37388]$ \(y^2=x^3+x^2-1933x+37388\) 2.3.0.a.1, 12.6.0.b.1, 22.6.0.a.1, 132.12.0.? $[(-7, 225)]$
3300.l1 3300.l \( 2^{2} \cdot 3 \cdot 5^{2} \cdot 11 \) $1$ $\Z/2\Z$ $0.301154242$ $[0, 1, 0, -428, -2652]$ \(y^2=x^3+x^2-428x-2652\) 2.3.0.a.1, 20.6.0.c.1, 44.6.0.e.1, 220.12.0.? $[(-8, 18)]$
3300.l2 3300.l \( 2^{2} \cdot 3 \cdot 5^{2} \cdot 11 \) $1$ $\Z/2\Z$ $0.150577121$ $[0, 1, 0, -153, 648]$ \(y^2=x^3+x^2-153x+648\) 2.3.0.a.1, 10.6.0.a.1, 44.6.0.e.1, 220.12.0.? $[(3, 15)]$
3300.m1 3300.m \( 2^{2} \cdot 3 \cdot 5^{2} \cdot 11 \) $0$ $\Z/3\Z$ $1$ $[0, 1, 0, -137708, 19623588]$ \(y^2=x^3+x^2-137708x+19623588\) 3.8.0-3.a.1.2, 132.16.0.? $[ ]$
3300.m2 3300.m \( 2^{2} \cdot 3 \cdot 5^{2} \cdot 11 \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 0, -62708, 40893588]$ \(y^2=x^3+x^2-62708x+40893588\) 3.8.0-3.a.1.1, 132.16.0.? $[ ]$
3300.n1 3300.n \( 2^{2} \cdot 3 \cdot 5^{2} \cdot 11 \) $1$ $\mathsf{trivial}$ $0.097349071$ $[0, 1, 0, 267, 1143]$ \(y^2=x^3+x^2+267x+1143\) 6.2.0.a.1 $[(9, 66)]$
3300.o1 3300.o \( 2^{2} \cdot 3 \cdot 5^{2} \cdot 11 \) $1$ $\Z/2\Z$ $0.129996898$ $[0, 1, 0, -1013, -10572]$ \(y^2=x^3+x^2-1013x-10572\) 2.3.0.a.1, 4.6.0.e.1, 10.6.0.a.1, 12.12.0.n.1, 20.12.0.k.1, $\ldots$ $[(-23, 33)]$
3300.o2 3300.o \( 2^{2} \cdot 3 \cdot 5^{2} \cdot 11 \) $1$ $\Z/2\Z$ $0.259993796$ $[0, 1, 0, 2012, -58972]$ \(y^2=x^3+x^2+2012x-58972\) 2.3.0.a.1, 4.6.0.e.1, 20.12.0.l.1, 24.12.0.bu.1, 88.12.0.?, $\ldots$ $[(32, 198)]$
3300.p1 3300.p \( 2^{2} \cdot 3 \cdot 5^{2} \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -1908, 31188]$ \(y^2=x^3+x^2-1908x+31188\) 2.3.0.a.1, 44.6.0.c.1, 60.6.0.a.1, 660.12.0.? $[ ]$
3300.p2 3300.p \( 2^{2} \cdot 3 \cdot 5^{2} \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -33, 1188]$ \(y^2=x^3+x^2-33x+1188\) 2.3.0.a.1, 22.6.0.a.1, 60.6.0.b.1, 660.12.0.? $[ ]$
3300.q1 3300.q \( 2^{2} \cdot 3 \cdot 5^{2} \cdot 11 \) $1$ $\Z/2\Z$ $2.886013852$ $[0, 1, 0, -9908, -382812]$ \(y^2=x^3+x^2-9908x-382812\) 2.3.0.a.1, 12.6.0.a.1, 44.6.0.c.1, 132.12.0.? $[(168, 1650)]$
3300.q2 3300.q \( 2^{2} \cdot 3 \cdot 5^{2} \cdot 11 \) $1$ $\Z/2\Z$ $1.443006926$ $[0, 1, 0, -533, -7812]$ \(y^2=x^3+x^2-533x-7812\) 2.3.0.a.1, 12.6.0.b.1, 22.6.0.a.1, 132.12.0.? $[(43, 225)]$
3300.r1 3300.r \( 2^{2} \cdot 3 \cdot 5^{2} \cdot 11 \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 0, -308, -2412]$ \(y^2=x^3+x^2-308x-2412\) 132.2.0.? $[ ]$
  displayed columns for results