# Properties

 Label 3300d Number of curves 2 Conductor 3300 CM no Rank 1 Graph # Related objects

Show commands for: SageMath
sage: E = EllipticCurve("3300.f1")

sage: E.isogeny_class()

## Elliptic curves in class 3300d

sage: E.isogeny_class().curves

LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
3300.f2 3300d1 [0, -1, 0, 67, -138]  768 $$\Gamma_0(N)$$-optimal
3300.f1 3300d2 [0, -1, 0, -308, -888]  1536

## Rank

sage: E.rank()

The elliptic curves in class 3300d have rank $$1$$.

## Modular form3300.2.a.f

sage: E.q_eigenform(10)

$$q - q^{3} + 2q^{7} + q^{9} + q^{11} + 2q^{13} - 4q^{17} - 6q^{19} + O(q^{20})$$

## Isogeny matrix

sage: E.isogeny_class().matrix()

The $$i,j$$ entry is the smallest degree of a cyclic isogeny between the $$i$$-th and $$j$$-th curve in the isogeny class, in the Cremona numbering.

$$\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)$$

## Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with Cremona labels. 