Properties

Label 327600.nq
Number of curves $4$
Conductor $327600$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("nq1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 327600.nq have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1\)
\(7\)\(1 - T\)
\(13\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 - 6 T + 11 T^{2}\) 1.11.ag
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 29 T^{2}\) 1.29.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 327600.nq do not have complex multiplication.

Modular form 327600.2.a.nq

Copy content sage:E.q_eigenform(10)
 
\(q + q^{7} + 6 q^{11} - q^{13} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 327600.nq

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
327600.nq1 327600nq4 \([0, 0, 0, -506196675, 4383560909250]\) \(11387025941627437947/10765300\) \(13561177593600000000\) \([2]\) \(47775744\) \(3.3990\)  
327600.nq2 327600nq3 \([0, 0, 0, -31644675, 68459573250]\) \(2781982314427707/2703013040\) \(3405017962644480000000\) \([2]\) \(23887872\) \(3.0524\)  
327600.nq3 327600nq2 \([0, 0, 0, -6396675, 5714709250]\) \(16751080718799363/1529437000000\) \(2642867136000000000000\) \([2]\) \(15925248\) \(2.8497\)  
327600.nq4 327600nq1 \([0, 0, 0, -1404675, -540266750]\) \(177381177331203/29679104000\) \(51285491712000000000\) \([2]\) \(7962624\) \(2.5031\) \(\Gamma_0(N)\)-optimal