Properties

Label 327184f
Number of curves $1$
Conductor $327184$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("f1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 327184f1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(11\)\(1\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 2 T + 3 T^{2}\) 1.3.c
\(5\) \( 1 + 4 T + 5 T^{2}\) 1.5.e
\(7\) \( 1 + 2 T + 7 T^{2}\) 1.7.c
\(17\) \( 1 + 8 T + 17 T^{2}\) 1.17.i
\(19\) \( 1 + T + 19 T^{2}\) 1.19.b
\(23\) \( 1 + T + 23 T^{2}\) 1.23.b
\(29\) \( 1 + T + 29 T^{2}\) 1.29.b
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 327184f do not have complex multiplication.

Modular form 327184.2.a.f

Copy content sage:E.q_eigenform(10)
 
\(q - 2 q^{3} - 4 q^{5} - 2 q^{7} + q^{9} + 8 q^{15} - 8 q^{17} - q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 327184f

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
327184.f1 327184f1 \([0, 1, 0, -1151960, 1196374804]\) \(-28561/88\) \(-520889435753030975488\) \([]\) \(18869760\) \(2.6618\) \(\Gamma_0(N)\)-optimal