Properties

Label 32634i
Number of curves $1$
Conductor $32634$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("i1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 32634i1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1\)
\(7\)\(1\)
\(37\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 2 T + 5 T^{2}\) 1.5.c
\(11\) \( 1 - 5 T + 11 T^{2}\) 1.11.af
\(13\) \( 1 - 3 T + 13 T^{2}\) 1.13.ad
\(17\) \( 1 + 3 T + 17 T^{2}\) 1.17.d
\(19\) \( 1 + 5 T + 19 T^{2}\) 1.19.f
\(23\) \( 1 - 3 T + 23 T^{2}\) 1.23.ad
\(29\) \( 1 + 29 T^{2}\) 1.29.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 32634i do not have complex multiplication.

Modular form 32634.2.a.i

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{4} - q^{5} - q^{8} + q^{10} - q^{11} + q^{16} + 8 q^{17} - 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 32634i

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
32634.j1 32634i1 \([1, -1, 0, -123032835, 539976798549]\) \(-49008900562345883761/1607393121140736\) \(-6755133773193877068447744\) \([]\) \(8184960\) \(3.5393\) \(\Gamma_0(N)\)-optimal