Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3+10125x-60750\)
|
(homogenize, simplify) |
\(y^2z=x^3+10125xz^2-60750z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3+10125x-60750\)
|
(homogenize, minimize) |
Mordell-Weil group structure
trivial
Invariants
Conductor: | $N$ | = | \( 32400 \) | = | $2^{4} \cdot 3^{4} \cdot 5^{2}$ |
|
Discriminant: | $\Delta$ | = | $-68024448000000$ | = | $-1 \cdot 2^{13} \cdot 3^{12} \cdot 5^{6} $ |
|
j-invariant: | $j$ | = | \( \frac{3375}{2} \) | = | $2^{-1} \cdot 3^{3} \cdot 5^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.3435852854610338716933982855$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-1.2528931399840713164194587395$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.4265653296335434$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.782227817078235$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
Mordell-Weil rank: | $r$ | = | $ 0$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
Real period: | $\Omega$ | ≈ | $0.36156594183341731117091530343$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 8 $ = $ 2^{2}\cdot1\cdot2 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
Special value: | $ L(E,1)$ | ≈ | $2.8925275346673384893673224274 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 2.892527535 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.361566 \cdot 1.000000 \cdot 8}{1^2} \\ & \approx 2.892527535\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 62208 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $4$ | $I_{5}^{*}$ | additive | -1 | 4 | 13 | 1 |
$3$ | $1$ | $II^{*}$ | additive | 1 | 4 | 12 | 0 |
$5$ | $2$ | $I_0^{*}$ | additive | 1 | 2 | 6 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2G | 8.2.0.1 |
$3$ | 3B | 3.4.0.1 |
$7$ | 7B | 7.8.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 2520 = 2^{3} \cdot 3^{2} \cdot 5 \cdot 7 \), index $768$, genus $21$, and generators
$\left(\begin{array}{rr} 1 & 0 \\ 1470 & 1 \end{array}\right),\left(\begin{array}{rr} 281 & 1400 \\ 1120 & 1401 \end{array}\right),\left(\begin{array}{rr} 1 & 930 \\ 1050 & 1261 \end{array}\right),\left(\begin{array}{rr} 503 & 0 \\ 0 & 2519 \end{array}\right),\left(\begin{array}{rr} 1479 & 350 \\ 560 & 879 \end{array}\right),\left(\begin{array}{rr} 209 & 1470 \\ 1785 & 2309 \end{array}\right),\left(\begin{array}{rr} 1 & 720 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 1680 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 1050 \\ 0 & 1081 \end{array}\right),\left(\begin{array}{rr} 1471 & 1290 \\ 420 & 2311 \end{array}\right),\left(\begin{array}{rr} 2101 & 1050 \\ 2205 & 1051 \end{array}\right),\left(\begin{array}{rr} 526 & 825 \\ 2205 & 1681 \end{array}\right),\left(\begin{array}{rr} 505 & 2016 \\ 504 & 505 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 1680 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 2016 & 1 \end{array}\right),\left(\begin{array}{rr} 841 & 1680 \\ 840 & 1681 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 420 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[2520])$ is a degree-$7524679680$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/2520\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $4$ | \( 2025 = 3^{4} \cdot 5^{2} \) |
$3$ | additive | $2$ | \( 400 = 2^{4} \cdot 5^{2} \) |
$5$ | additive | $14$ | \( 1296 = 2^{4} \cdot 3^{4} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
3, 7 and 21.
Its isogeny class 32400bq
consists of 4 curves linked by isogenies of
degrees dividing 21.
Twists
The minimal quadratic twist of this elliptic curve is 162c1, its twist by $60$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{15}) \) | \(\Z/3\Z\) | not in database |
$3$ | 3.1.648.1 | \(\Z/2\Z\) | not in database |
$6$ | 6.0.3359232.4 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$6$ | 6.0.23328000.1 | \(\Z/3\Z\) | not in database |
$6$ | 6.0.52488000.1 | \(\Z/7\Z\) | not in database |
$6$ | 6.2.2519424000.3 | \(\Z/6\Z\) | not in database |
$12$ | deg 12 | \(\Z/4\Z\) | not in database |
$12$ | 12.0.4897760256000000.3 | \(\Z/3\Z \oplus \Z/3\Z\) | not in database |
$12$ | deg 12 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$12$ | 12.0.24794911296000000.3 | \(\Z/21\Z\) | not in database |
$18$ | 18.6.2689081076896047739920384000000000.2 | \(\Z/9\Z\) | not in database |
$18$ | 18.0.6908559991272917434368000000000.2 | \(\Z/6\Z\) | not in database |
$18$ | 18.0.592297667290202112000000000.1 | \(\Z/14\Z\) | not in database |
$18$ | 18.0.6746640616477458432000000000.4 | \(\Z/21\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | add | add | add | ord | ord | ord | ord | ord | ord | ord | ord | ord | ord | ord | ord |
$\lambda$-invariant(s) | - | - | - | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
$\mu$-invariant(s) | - | - | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.