Properties

Label 32400.a
Number of curves $1$
Conductor $32400$
CM no
Rank $2$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("a1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 32400.a1 has rank \(2\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 5 T + 7 T^{2}\) 1.7.f
\(11\) \( 1 + 4 T + 11 T^{2}\) 1.11.e
\(13\) \( 1 + 5 T + 13 T^{2}\) 1.13.f
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(19\) \( 1 - 7 T + 19 T^{2}\) 1.19.ah
\(23\) \( 1 - T + 23 T^{2}\) 1.23.ab
\(29\) \( 1 + 8 T + 29 T^{2}\) 1.29.i
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 32400.a do not have complex multiplication.

Modular form 32400.2.a.a

Copy content sage:E.q_eigenform(10)
 
\(q - 5 q^{7} - 4 q^{11} - 5 q^{13} + 7 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 32400.a

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
32400.a1 32400x1 \([0, 0, 0, -315, 2250]\) \(-18522\) \(-186624000\) \([]\) \(16128\) \(0.34561\) \(\Gamma_0(N)\)-optimal