Properties

Label 32368e
Number of curves $2$
Conductor $32368$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("e1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 32368e have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(7\)\(1 - T\)
\(17\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 2 T + 3 T^{2}\) 1.3.c
\(5\) \( 1 + 2 T + 5 T^{2}\) 1.5.c
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 - 4 T + 13 T^{2}\) 1.13.ae
\(19\) \( 1 + 6 T + 19 T^{2}\) 1.19.g
\(23\) \( 1 + T + 23 T^{2}\) 1.23.b
\(29\) \( 1 - 7 T + 29 T^{2}\) 1.29.ah
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 32368e do not have complex multiplication.

Modular form 32368.2.a.e

Copy content sage:E.q_eigenform(10)
 
\(q + 2 q^{3} + 4 q^{5} + q^{7} + q^{9} + 8 q^{15} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 32368e

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
32368.bh2 32368e1 \([0, -1, 0, -96, 20048]\) \(-4/7\) \(-173018094592\) \([2]\) \(40960\) \(0.83536\) \(\Gamma_0(N)\)-optimal
32368.bh1 32368e2 \([0, -1, 0, -11656, 482448]\) \(3543122/49\) \(2422253324288\) \([2]\) \(81920\) \(1.1819\)