Show commands: SageMath
Rank
The elliptic curves in class 32200p have rank \(0\).
L-function data
| Bad L-factors: |
| ||||||||||||||||||||||||
| Good L-factors: |
| ||||||||||||||||||||||||
| See L-function page for more information | |||||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 32200p do not have complex multiplication.Modular form 32200.2.a.p
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 32200p
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 32200.u2 | 32200p1 | \([0, -1, 0, 104792, 1892412]\) | \(7953970437500/4703287687\) | \(-75252602992000000\) | \([2]\) | \(276480\) | \(1.9277\) | \(\Gamma_0(N)\)-optimal |
| 32200.u1 | 32200p2 | \([0, -1, 0, -424208, 15646412]\) | \(263822189935250/149429406721\) | \(4781741015072000000\) | \([2]\) | \(552960\) | \(2.2742\) |