Properties

Label 321600.jn
Number of curves $4$
Conductor $321600$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("jn1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 321600.jn have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(5\)\(1\)
\(67\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 - 4 T + 7 T^{2}\) 1.7.ae
\(11\) \( 1 - 4 T + 11 T^{2}\) 1.11.ae
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 - 8 T + 23 T^{2}\) 1.23.ai
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 321600.jn do not have complex multiplication.

Modular form 321600.2.a.jn

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} + 4 q^{7} + q^{9} + 4 q^{11} + 2 q^{13} + 6 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 321600.jn

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
321600.jn1 321600jn3 \([0, 1, 0, -469633, 90288863]\) \(5593330773938/1511334075\) \(3095212185600000000\) \([2]\) \(6291456\) \(2.2561\)  
321600.jn2 321600jn2 \([0, 1, 0, -169633, -25811137]\) \(527178079876/25250625\) \(25856640000000000\) \([2, 2]\) \(3145728\) \(1.9095\)  
321600.jn3 321600jn1 \([0, 1, 0, -167633, -26473137]\) \(2035002230224/5025\) \(1286400000000\) \([2]\) \(1572864\) \(1.5629\) \(\Gamma_0(N)\)-optimal
321600.jn4 321600jn4 \([0, 1, 0, 98367, -99511137]\) \(51396982702/2119921875\) \(-4341600000000000000\) \([2]\) \(6291456\) \(2.2561\)