Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+y=x^3-177120x+28691253\)
|
(homogenize, simplify) |
\(y^2z+yz^2=x^3-177120xz^2+28691253z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-2833920x+1836240208\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{3}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(-1479/4, 52839/8)$ | $6.5268644544357489407715866923$ | $\infty$ |
$(243, 0)$ | $0$ | $3$ |
Integral points
\( \left(243, 0\right) \), \( \left(243, -1\right) \)
Invariants
Conductor: | $N$ | = | \( 3213 \) | = | $3^{3} \cdot 7 \cdot 17$ |
|
Discriminant: | $\Delta$ | = | $157437$ | = | $3^{3} \cdot 7^{3} \cdot 17 $ |
|
j-invariant: | $j$ | = | \( \frac{22759502184972288000}{5831} \) | = | $2^{27} \cdot 3^{9} \cdot 5^{3} \cdot 7^{-3} \cdot 17^{-1} \cdot 41^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.2796308114795927720176977997$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $1.0049777393125653491688864905$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.2188506759739957$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.927874459781514$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $6.5268644544357489407715866923$ |
|
Real period: | $\Omega$ | ≈ | $1.3297014334485733501359257090$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 3 $ = $ 1\cdot3\cdot1 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $3$ |
|
Special value: | $ L'(E,1)$ | ≈ | $2.8929270069959186757271819636 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 2.892927007 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 1.329701 \cdot 6.526864 \cdot 3}{3^2} \\ & \approx 2.892927007\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 4968 |
|
$ \Gamma_0(N) $-optimal: | yes | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$3$ | $1$ | $II$ | additive | -1 | 3 | 3 | 0 |
$7$ | $3$ | $I_{3}$ | split multiplicative | -1 | 1 | 3 | 3 |
$17$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$3$ | 3B.1.1 | 9.72.0.7 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 2142 = 2 \cdot 3^{2} \cdot 7 \cdot 17 \), index $144$, genus $3$, and generators
$\left(\begin{array}{rr} 1234 & 9 \\ 603 & 2134 \end{array}\right),\left(\begin{array}{rr} 1 & 18 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 10 & 9 \\ 81 & 73 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 18 & 1 \end{array}\right),\left(\begin{array}{rr} 1900 & 9 \\ 1503 & 2134 \end{array}\right),\left(\begin{array}{rr} 2125 & 18 \\ 2124 & 19 \end{array}\right),\left(\begin{array}{rr} 14 & 9 \\ 171 & 1300 \end{array}\right),\left(\begin{array}{rr} 1 & 18 \\ 10 & 181 \end{array}\right)$.
The torsion field $K:=\Q(E[2142])$ is a degree-$25583910912$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/2142\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$3$ | additive | $2$ | \( 17 \) |
$7$ | split multiplicative | $8$ | \( 459 = 3^{3} \cdot 17 \) |
$17$ | nonsplit multiplicative | $18$ | \( 189 = 3^{3} \cdot 7 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
3 and 9.
Its isogeny class 3213r
consists of 3 curves linked by isogenies of
degrees dividing 9.
Twists
This elliptic curve is its own minimal quadratic twist.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{3}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$3$ | 3.3.12852.1 | \(\Z/6\Z\) | not in database |
$3$ | \(\Q(\zeta_{9})^+\) | \(\Z/9\Z\) | not in database |
$6$ | 6.6.58967083728.1 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$6$ | 6.0.2255067.2 | \(\Z/3\Z \oplus \Z/3\Z\) | not in database |
$6$ | 6.0.1643943843.1 | \(\Z/9\Z\) | not in database |
$9$ | 9.9.1547532145357632.1 | \(\Z/18\Z\) | not in database |
$12$ | deg 12 | \(\Z/12\Z\) | not in database |
$18$ | 18.0.4442842666916764759667098107.1 | \(\Z/3\Z \oplus \Z/9\Z\) | not in database |
$18$ | 18.0.848749314373354675143597174722408448.1 | \(\Z/3\Z \oplus \Z/6\Z\) | not in database |
$18$ | 18.0.50117798264432220212554269570183496445952.1 | \(\Z/18\Z\) | not in database |
$18$ | 18.18.12107138116514727562639135111897141248.1 | \(\Z/2\Z \oplus \Z/18\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | ss | add | ss | split | ss | ord | nonsplit | ord | ord | ord | ord | ord | ss | ord | ord |
$\lambda$-invariant(s) | 6,1 | - | 1,1 | 2 | 3,1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1,1 | 1 | 1 |
$\mu$-invariant(s) | 0,0 | - | 0,0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.