Show commands: SageMath
Rank
The elliptic curves in class 3200t have rank \(0\).
L-function data
Bad L-factors: |
| ||||||||||||||||||||||||||||||
Good L-factors: |
| ||||||||||||||||||||||||||||||
See L-function page for more information |
Complex multiplication
The elliptic curves in class 3200t do not have complex multiplication.Modular form 3200.2.a.t
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 3200t
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
3200.x2 | 3200t1 | \([0, -1, 0, 17, 87]\) | \(128\) | \(-4000000\) | \([2]\) | \(512\) | \(-0.051711\) | \(\Gamma_0(N)\)-optimal |
3200.x1 | 3200t2 | \([0, -1, 0, -233, 1337]\) | \(10976\) | \(128000000\) | \([2]\) | \(1024\) | \(0.29486\) |