Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy=x^3-254213x+47332417\)
|
(homogenize, simplify) |
\(y^2z+xyz=x^3-254213xz^2+47332417z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-329460075x+2209329627750\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(82, 5159)$ | $0.30888780878522380239476850110$ | $\infty$ |
$(186, 2455)$ | $0.60099997281277374839095446901$ | $\infty$ |
$(242, -121)$ | $0$ | $2$ |
Integral points
\( \left(-568, 3209\right) \), \( \left(-568, -2641\right) \), \( \left(-542, 5367\right) \), \( \left(-542, -4825\right) \), \( \left(-318, 9959\right) \), \( \left(-318, -9641\right) \), \( \left(-118, 8759\right) \), \( \left(-118, -8641\right) \), \( \left(-108, 8629\right) \), \( \left(-108, -8521\right) \), \( \left(46, 5955\right) \), \( \left(46, -6001\right) \), \( \left(82, 5159\right) \), \( \left(82, -5241\right) \), \( \left(186, 2455\right) \), \( \left(186, -2641\right) \), \( \left(232, 809\right) \), \( \left(232, -1041\right) \), \( \left(242, -121\right) \), \( \left(342, 479\right) \), \( \left(342, -821\right) \), \( \left(368, 1727\right) \), \( \left(368, -2095\right) \), \( \left(382, 2259\right) \), \( \left(382, -2641\right) \), \( \left(466, 5255\right) \), \( \left(466, -5721\right) \), \( \left(498, 6407\right) \), \( \left(498, -6905\right) \), \( \left(642, 11879\right) \), \( \left(642, -12521\right) \), \( \left(732, 15559\right) \), \( \left(732, -16291\right) \), \( \left(1642, 62879\right) \), \( \left(1642, -64521\right) \), \( \left(4866, 335255\right) \), \( \left(4866, -340121\right) \), \( \left(5282, 379559\right) \), \( \left(5282, -384841\right) \), \( \left(8082, 721159\right) \), \( \left(8082, -729241\right) \), \( \left(8992, 846879\right) \), \( \left(8992, -855871\right) \), \( \left(96282, 29827159\right) \), \( \left(96282, -29923441\right) \), \( \left(143056, 54035889\right) \), \( \left(143056, -54178945\right) \), \( \left(2984482, 5154395559\right) \), \( \left(2984482, -5157380041\right) \)
Invariants
Conductor: | $N$ | = | \( 31850 \) | = | $2 \cdot 5^{2} \cdot 7^{2} \cdot 13$ |
|
Discriminant: | $\Delta$ | = | $82711952960000000$ | = | $2^{12} \cdot 5^{7} \cdot 7^{6} \cdot 13^{3} $ |
|
j-invariant: | $j$ | = | \( \frac{988345570681}{44994560} \) | = | $2^{-12} \cdot 5^{-1} \cdot 7^{3} \cdot 13^{-3} \cdot 1423^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.0081234332223704254428924830$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.23044940247766358558983644466$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.9543225417743602$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.721030520215792$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 2$ |
|
Mordell-Weil rank: | $r$ | = | $ 2$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $0.17956284394004275265798826279$ |
|
Real period: | $\Omega$ | ≈ | $0.33806795511413323307984398688$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 576 $ = $ ( 2^{2} \cdot 3 )\cdot2^{2}\cdot2^{2}\cdot3 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L^{(2)}(E,1)/2!$ | ≈ | $8.7414398590015416849905458499 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 8.741439859 \approx L^{(2)}(E,1)/2! & \overset{?}{=} \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.338068 \cdot 0.179563 \cdot 576}{2^2} \\ & \approx 8.741439859\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 497664 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $12$ | $I_{12}$ | split multiplicative | -1 | 1 | 12 | 12 |
$5$ | $4$ | $I_{1}^{*}$ | additive | 1 | 2 | 7 | 1 |
$7$ | $4$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 |
$13$ | $3$ | $I_{3}$ | split multiplicative | -1 | 1 | 3 | 3 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 4.6.0.3 |
$3$ | 3B | 3.4.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 10920 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 13 \), index $384$, genus $9$, and generators
$\left(\begin{array}{rr} 8191 & 4704 \\ 7812 & 1849 \end{array}\right),\left(\begin{array}{rr} 1 & 12 \\ 12 & 145 \end{array}\right),\left(\begin{array}{rr} 3858 & 1561 \\ 4823 & 8 \end{array}\right),\left(\begin{array}{rr} 7 & 24 \\ 492 & 1687 \end{array}\right),\left(\begin{array}{rr} 3641 & 4704 \\ 3640 & 1 \end{array}\right),\left(\begin{array}{rr} 3119 & 0 \\ 0 & 10919 \end{array}\right),\left(\begin{array}{rr} 5461 & 4704 \\ 5460 & 1 \end{array}\right),\left(\begin{array}{rr} 10897 & 24 \\ 10896 & 25 \end{array}\right),\left(\begin{array}{rr} 1 & 24 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 608 & 6237 \\ 8883 & 4766 \end{array}\right),\left(\begin{array}{rr} 21 & 4 \\ 10820 & 10901 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 24 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[10920])$ is a degree-$4869303828480$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/10920\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | split multiplicative | $4$ | \( 15925 = 5^{2} \cdot 7^{2} \cdot 13 \) |
$3$ | good | $2$ | \( 1225 = 5^{2} \cdot 7^{2} \) |
$5$ | additive | $18$ | \( 1274 = 2 \cdot 7^{2} \cdot 13 \) |
$7$ | additive | $26$ | \( 650 = 2 \cdot 5^{2} \cdot 13 \) |
$13$ | split multiplicative | $14$ | \( 2450 = 2 \cdot 5^{2} \cdot 7^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 3 and 6.
Its isogeny class 31850.bo
consists of 4 curves linked by isogenies of
degrees dividing 6.
Twists
The minimal quadratic twist of this elliptic curve is 130.a1, its twist by $-35$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{65}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$2$ | \(\Q(\sqrt{105}) \) | \(\Z/6\Z\) | not in database |
$4$ | 4.0.50960.2 | \(\Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{65}, \sqrt{105})\) | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$6$ | 6.0.781396875.1 | \(\Z/6\Z\) | not in database |
$8$ | 8.0.10971993760000.19 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.4.2897292102250000.13 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.5258766240000.15 | \(\Z/12\Z\) | not in database |
$12$ | deg 12 | \(\Z/3\Z \oplus \Z/6\Z\) | not in database |
$12$ | deg 12 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
$16$ | deg 16 | \(\Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
$18$ | 18.6.35846476177713434462726119055942145000000000000.2 | \(\Z/18\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | split | ord | add | add | ord | split | ord | ord | ord | ord | ord | ord | ord | ord | ord |
$\lambda$-invariant(s) | 5 | 6 | - | - | 2 | 3 | 4 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
$\mu$-invariant(s) | 0 | 0 | - | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.