Show commands: SageMath
Rank
The elliptic curves in class 31680dn have rank \(0\).
L-function data
Bad L-factors: |
| ||||||||||||||||||||||||
Good L-factors: |
| ||||||||||||||||||||||||
See L-function page for more information |
Complex multiplication
The elliptic curves in class 31680dn do not have complex multiplication.Modular form 31680.2.a.dn
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 31680dn
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
31680.ea3 | 31680dn1 | \([0, 0, 0, -12972, -479536]\) | \(1263214441/211200\) | \(40360948531200\) | \([2]\) | \(98304\) | \(1.3319\) | \(\Gamma_0(N)\)-optimal |
31680.ea2 | 31680dn2 | \([0, 0, 0, -59052, 5068496]\) | \(119168121961/10890000\) | \(2081111408640000\) | \([2, 2]\) | \(196608\) | \(1.6784\) | |
31680.ea4 | 31680dn3 | \([0, 0, 0, 67668, 23873744]\) | \(179310732119/1392187500\) | \(-266051174400000000\) | \([2]\) | \(393216\) | \(2.0250\) | |
31680.ea1 | 31680dn4 | \([0, 0, 0, -923052, 341337296]\) | \(455129268177961/4392300\) | \(839381601484800\) | \([2]\) | \(393216\) | \(2.0250\) |