Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3+585492x-1095366832\)
|
(homogenize, simplify) |
\(y^2z=x^3+585492xz^2-1095366832z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3+585492x-1095366832\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(841888528/11881, 24429047729724/1295029)$ | $16.370145330187027301772017134$ | $\infty$ |
$(844, 0)$ | $0$ | $2$ |
Integral points
\( \left(844, 0\right) \)
Invariants
Conductor: | $N$ | = | \( 31680 \) | = | $2^{6} \cdot 3^{2} \cdot 5 \cdot 11$ |
|
Discriminant: | $\Delta$ | = | $-531171169689600000000$ | = | $-1 \cdot 2^{19} \cdot 3^{11} \cdot 5^{8} \cdot 11^{4} $ |
|
j-invariant: | $j$ | = | \( \frac{116149984977671}{2779502343750} \) | = | $2^{-1} \cdot 3^{-5} \cdot 5^{-8} \cdot 11^{-4} \cdot 97^{3} \cdot 503^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.6570106661113489220481623511$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $1.0679837509373761122246915505$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.042494685403093$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.32177069937996$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $16.370145330187027301772017134$ |
|
Real period: | $\Omega$ | ≈ | $0.079750913213982376397547737695$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 16 $ = $ 2\cdot2\cdot2\cdot2 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L'(E,1)$ | ≈ | $5.2221361581120979511955350097 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 5.222136158 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.079751 \cdot 16.370145 \cdot 16}{2^2} \\ & \approx 5.222136158\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 983040 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $2$ | $I_{9}^{*}$ | additive | -1 | 6 | 19 | 1 |
$3$ | $2$ | $I_{5}^{*}$ | additive | -1 | 2 | 11 | 5 |
$5$ | $2$ | $I_{8}$ | nonsplit multiplicative | 1 | 1 | 8 | 8 |
$11$ | $2$ | $I_{4}$ | nonsplit multiplicative | 1 | 1 | 4 | 4 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 8.12.0.8 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 264 = 2^{3} \cdot 3 \cdot 11 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 172 & 263 \\ 65 & 258 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 7 & 6 \\ 258 & 259 \end{array}\right),\left(\begin{array}{rr} 257 & 8 \\ 256 & 9 \end{array}\right),\left(\begin{array}{rr} 32 & 157 \\ 95 & 66 \end{array}\right),\left(\begin{array}{rr} 29 & 32 \\ 142 & 27 \end{array}\right),\left(\begin{array}{rr} 145 & 8 \\ 52 & 33 \end{array}\right)$.
The torsion field $K:=\Q(E[264])$ is a degree-$20275200$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/264\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $4$ | \( 9 = 3^{2} \) |
$3$ | additive | $8$ | \( 3520 = 2^{6} \cdot 5 \cdot 11 \) |
$5$ | nonsplit multiplicative | $6$ | \( 6336 = 2^{6} \cdot 3^{2} \cdot 11 \) |
$11$ | nonsplit multiplicative | $12$ | \( 2880 = 2^{6} \cdot 3^{2} \cdot 5 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 31680ci
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 330a4, its twist by $24$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{-6}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$2$ | \(\Q(\sqrt{2}) \) | \(\Z/4\Z\) | not in database |
$2$ | \(\Q(\sqrt{-3}) \) | \(\Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{2}, \sqrt{-3})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.12230590464.6 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.4.43717791744.1 | \(\Z/8\Z\) | not in database |
$8$ | 8.0.4974113193984.74 | \(\Z/8\Z\) | not in database |
$8$ | deg 8 | \(\Z/6\Z\) | not in database |
$16$ | 16.0.149587343098087735296.14 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | 16.0.1911245314971754561536.2 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/12\Z\) | not in database |
$16$ | deg 16 | \(\Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | add | add | nonsplit | ss | nonsplit | ord | ord | ord | ord | ord | ord | ord | ord | ord | ord |
$\lambda$-invariant(s) | - | - | 1 | 1,3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
$\mu$-invariant(s) | - | - | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.