Show commands: SageMath
Rank
The elliptic curves in class 31680bd have rank \(1\).
L-function data
Bad L-factors: |
| ||||||||||||||||||||||||
Good L-factors: |
| ||||||||||||||||||||||||
See L-function page for more information |
Complex multiplication
The elliptic curves in class 31680bd do not have complex multiplication.Modular form 31680.2.a.bd
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrrrr} 1 & 2 & 4 & 4 & 8 & 8 \\ 2 & 1 & 2 & 2 & 4 & 4 \\ 4 & 2 & 1 & 4 & 2 & 2 \\ 4 & 2 & 4 & 1 & 8 & 8 \\ 8 & 4 & 2 & 8 & 1 & 4 \\ 8 & 4 & 2 & 8 & 4 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 31680bd
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
31680.cx5 | 31680bd1 | \([0, 0, 0, 2868, -229264]\) | \(13651919/126720\) | \(-24216569118720\) | \([2]\) | \(49152\) | \(1.2494\) | \(\Gamma_0(N)\)-optimal |
31680.cx4 | 31680bd2 | \([0, 0, 0, -43212, -3196816]\) | \(46694890801/3920400\) | \(749200107110400\) | \([2, 2]\) | \(98304\) | \(1.5960\) | |
31680.cx3 | 31680bd3 | \([0, 0, 0, -146892, 17995376]\) | \(1834216913521/329422500\) | \(62953620111360000\) | \([2, 2]\) | \(196608\) | \(1.9425\) | |
31680.cx2 | 31680bd4 | \([0, 0, 0, -676812, -214312336]\) | \(179415687049201/1443420\) | \(275841857617920\) | \([2]\) | \(196608\) | \(1.9425\) | |
31680.cx6 | 31680bd5 | \([0, 0, 0, 285108, 103876976]\) | \(13411719834479/32153832150\) | \(-6144693013669478400\) | \([2]\) | \(393216\) | \(2.2891\) | |
31680.cx1 | 31680bd6 | \([0, 0, 0, -2237772, 1288414064]\) | \(6484907238722641/283593750\) | \(54195609600000000\) | \([4]\) | \(393216\) | \(2.2891\) |