Properties

Label 31680.dg
Number of curves $4$
Conductor $31680$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("dg1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 31680.dg have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1 - T\)
\(11\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 7 T^{2}\) 1.7.a
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
\(29\) \( 1 - 10 T + 29 T^{2}\) 1.29.ak
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 31680.dg do not have complex multiplication.

Modular form 31680.2.a.dg

Copy content sage:E.q_eigenform(10)
 
\(q + q^{5} + q^{11} - 2 q^{13} + 6 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 31680.dg

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
31680.dg1 31680br4 \([0, 0, 0, -319518732, -2198328096944]\) \(151020262560470148771848/35809491031875\) \(855412538154577920000\) \([2]\) \(3932160\) \(3.3952\)  
31680.dg2 31680br2 \([0, 0, 0, -20043732, -34082166944]\) \(298244193811346574784/4540317078515625\) \(13557314151374400000000\) \([2, 2]\) \(1966080\) \(3.0487\)  
31680.dg3 31680br1 \([0, 0, 0, -2465607, 666270556]\) \(35529391776305786176/16450653076171875\) \(767521669921875000000\) \([2]\) \(983040\) \(2.7021\) \(\Gamma_0(N)\)-optimal
31680.dg4 31680br3 \([0, 0, 0, -1818732, -93736236944]\) \(-27851742625371848/158882936571500625\) \(-3795375251804125777920000\) \([2]\) \(3932160\) \(3.3952\)