Properties

Label 31680.bw
Number of curves $4$
Conductor $31680$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bw1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 31680.bw have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1 + T\)
\(11\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 - 4 T + 7 T^{2}\) 1.7.ae
\(13\) \( 1 - 4 T + 13 T^{2}\) 1.13.ae
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(19\) \( 1 - 2 T + 19 T^{2}\) 1.19.ac
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 29 T^{2}\) 1.29.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 31680.bw do not have complex multiplication.

Modular form 31680.2.a.bw

Copy content sage:E.q_eigenform(10)
 
\(q - q^{5} + 4 q^{7} + q^{11} + 4 q^{13} + 6 q^{17} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 3 & 6 & 2 \\ 3 & 1 & 2 & 6 \\ 6 & 2 & 1 & 3 \\ 2 & 6 & 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 31680.bw

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
31680.bw1 31680da4 \([0, 0, 0, -56028, -2772848]\) \(1628514404944/664335375\) \(7934779201536000\) \([2]\) \(221184\) \(1.7485\)  
31680.bw2 31680da2 \([0, 0, 0, -25788, 1593808]\) \(158792223184/16335\) \(195104194560\) \([2]\) \(73728\) \(1.1992\)  
31680.bw3 31680da1 \([0, 0, 0, -1488, 28888]\) \(-488095744/200475\) \(-149653785600\) \([2]\) \(36864\) \(0.85261\) \(\Gamma_0(N)\)-optimal
31680.bw4 31680da3 \([0, 0, 0, 11472, -315848]\) \(223673040896/187171875\) \(-139723056000000\) \([2]\) \(110592\) \(1.4019\)