Show commands: SageMath
Rank
The elliptic curves in class 31600s have rank \(1\).
L-function data
Bad L-factors: |
| ||||||||||||||||||||||||||||||
Good L-factors: |
| ||||||||||||||||||||||||||||||
See L-function page for more information |
Complex multiplication
The elliptic curves in class 31600s do not have complex multiplication.Modular form 31600.2.a.s
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 31600s
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
31600.w2 | 31600s1 | \([0, -1, 0, 392, -6288]\) | \(103823/316\) | \(-20224000000\) | \([2]\) | \(18432\) | \(0.66083\) | \(\Gamma_0(N)\)-optimal |
31600.w1 | 31600s2 | \([0, -1, 0, -3608, -70288]\) | \(81182737/12482\) | \(798848000000\) | \([2]\) | \(36864\) | \(1.0074\) |