Properties

Label 312050.o
Number of curves $1$
Conductor $312050$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("o1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 312050.o1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(5\)\(1\)
\(79\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + T + 3 T^{2}\) 1.3.b
\(7\) \( 1 - 2 T + 7 T^{2}\) 1.7.ac
\(11\) \( 1 + T + 11 T^{2}\) 1.11.b
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 - T + 17 T^{2}\) 1.17.ab
\(19\) \( 1 + T + 19 T^{2}\) 1.19.b
\(23\) \( 1 + 6 T + 23 T^{2}\) 1.23.g
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 312050.o do not have complex multiplication.

Modular form 312050.2.a.o

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} - q^{3} + q^{4} - q^{6} + 2 q^{7} + q^{8} - 2 q^{9} - q^{11} - q^{12} + 2 q^{13} + 2 q^{14} + q^{16} + q^{17} - 2 q^{18} - q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 312050.o

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
312050.o1 312050o1 \([1, 1, 1, -171396713, 864272502231]\) \(-3665123505412225/3272081408\) \(-497126214830181908480000\) \([]\) \(54063360\) \(3.4718\) \(\Gamma_0(N)\)-optimal