Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3+x^2-264758x-52428012\)
|
(homogenize, simplify) |
\(y^2z=x^3+x^2z-264758xz^2-52428012z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-21445425x-38155684500\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(-296, 306)$ | $2.7327560848871968178232287641$ | $\infty$ |
$(-287, 0)$ | $0$ | $2$ |
Integral points
\((-296,\pm 306)\), \( \left(-287, 0\right) \), \((1738,\pm 68850)\)
Invariants
Conductor: | $N$ | = | \( 31200 \) | = | $2^{5} \cdot 3 \cdot 5^{2} \cdot 13$ |
|
Discriminant: | $\Delta$ | = | $4317958125000000$ | = | $2^{6} \cdot 3^{12} \cdot 5^{10} \cdot 13 $ |
|
j-invariant: | $j$ | = | \( \frac{2052450196928704}{4317958125} \) | = | $2^{6} \cdot 3^{-12} \cdot 5^{-4} \cdot 13^{-1} \cdot 31771^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.8852112881660871670904413426$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.73391874166906432508144561526$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.997177538945588$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.742220629448724$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $2.7327560848871968178232287641$ |
|
Real period: | $\Omega$ | ≈ | $0.21049512321979362738692771949$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 48 $ = $ 2\cdot( 2^{2} \cdot 3 )\cdot2\cdot1 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L'(E,1)$ | ≈ | $6.9027819458156556954475810230 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 6.902781946 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.210495 \cdot 2.732756 \cdot 48}{2^2} \\ & \approx 6.902781946\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 221184 |
|
$ \Gamma_0(N) $-optimal: | yes | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $2$ | $III$ | additive | 1 | 5 | 6 | 0 |
$3$ | $12$ | $I_{12}$ | split multiplicative | -1 | 1 | 12 | 12 |
$5$ | $2$ | $I_{4}^{*}$ | additive | 1 | 2 | 10 | 4 |
$13$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 4.6.0.3 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 1560 = 2^{3} \cdot 3 \cdot 5 \cdot 13 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 1411 & 630 \\ 930 & 931 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 1319 & 930 \\ 630 & 629 \end{array}\right),\left(\begin{array}{rr} 3 & 8 \\ 28 & 75 \end{array}\right),\left(\begin{array}{rr} 623 & 0 \\ 0 & 1559 \end{array}\right),\left(\begin{array}{rr} 1553 & 8 \\ 1552 & 9 \end{array}\right),\left(\begin{array}{rr} 5 & 8 \\ 48 & 77 \end{array}\right),\left(\begin{array}{rr} 521 & 320 \\ 1460 & 1281 \end{array}\right),\left(\begin{array}{rr} 536 & 315 \\ 725 & 626 \end{array}\right)$.
The torsion field $K:=\Q(E[1560])$ is a degree-$19322634240$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/1560\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $2$ | \( 325 = 5^{2} \cdot 13 \) |
$3$ | split multiplicative | $4$ | \( 10400 = 2^{5} \cdot 5^{2} \cdot 13 \) |
$5$ | additive | $18$ | \( 1248 = 2^{5} \cdot 3 \cdot 13 \) |
$13$ | split multiplicative | $14$ | \( 2400 = 2^{5} \cdot 3 \cdot 5^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 31200x
consists of 2 curves linked by isogenies of
degree 2.
Twists
The minimal quadratic twist of this elliptic curve is 6240y1, its twist by $5$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{13}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$4$ | 4.0.20800.1 | \(\Z/4\Z\) | not in database |
$8$ | 8.4.197706096640000.29 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.73116160000.6 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | deg 8 | \(\Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
$16$ | deg 16 | \(\Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | add | split | add | ord | ord | split | ord | ord | ord | ord | ord | ord | ord | ss | ord |
$\lambda$-invariant(s) | - | 4 | - | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1,1 | 3 |
$\mu$-invariant(s) | - | 0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.