Properties

Label 31200.ca
Number of curves $4$
Conductor $31200$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("ca1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 31200.ca have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(5\)\(1\)
\(13\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 7 T^{2}\) 1.7.a
\(11\) \( 1 - 4 T + 11 T^{2}\) 1.11.ae
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 31200.ca do not have complex multiplication.

Modular form 31200.2.a.ca

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} + q^{9} + 4 q^{11} - q^{13} - 6 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 31200.ca

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
31200.ca1 31200bu4 \([0, 1, 0, -17408, -889812]\) \(72929847752/5265\) \(42120000000\) \([2]\) \(49152\) \(1.0901\)  
31200.ca2 31200bu3 \([0, 1, 0, -6033, 168063]\) \(379503424/24375\) \(1560000000000\) \([2]\) \(49152\) \(1.0901\)  
31200.ca3 31200bu1 \([0, 1, 0, -1158, -12312]\) \(171879616/38025\) \(38025000000\) \([2, 2]\) \(24576\) \(0.74348\) \(\Gamma_0(N)\)-optimal
31200.ca4 31200bu2 \([0, 1, 0, 2592, -72312]\) \(240641848/428415\) \(-3427320000000\) \([2]\) \(49152\) \(1.0901\)