Properties

Label 309680.u
Number of curves $1$
Conductor $309680$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("u1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 309680.u1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(5\)\(1 + T\)
\(7\)\(1\)
\(79\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + T + 3 T^{2}\) 1.3.b
\(11\) \( 1 + T + 11 T^{2}\) 1.11.b
\(13\) \( 1 + T + 13 T^{2}\) 1.13.b
\(17\) \( 1 - 3 T + 17 T^{2}\) 1.17.ad
\(19\) \( 1 + 2 T + 19 T^{2}\) 1.19.c
\(23\) \( 1 + 2 T + 23 T^{2}\) 1.23.c
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 309680.u do not have complex multiplication.

Modular form 309680.2.a.u

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} - q^{5} - 2 q^{9} - q^{11} - q^{13} + q^{15} + 3 q^{17} - 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 309680.u

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
309680.u1 309680u1 \([0, -1, 0, -1301456, 574014400]\) \(-1474925918887/6320000\) \(-1044622525399040000\) \([]\) \(3612672\) \(2.3115\) \(\Gamma_0(N)\)-optimal