Properties

Label 309680.t
Number of curves $1$
Conductor $309680$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("t1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 309680.t1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(5\)\(1 + T\)
\(7\)\(1\)
\(79\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + T + 3 T^{2}\) 1.3.b
\(11\) \( 1 + T + 11 T^{2}\) 1.11.b
\(13\) \( 1 + 6 T + 13 T^{2}\) 1.13.g
\(17\) \( 1 - 3 T + 17 T^{2}\) 1.17.ad
\(19\) \( 1 + T + 19 T^{2}\) 1.19.b
\(23\) \( 1 - 2 T + 23 T^{2}\) 1.23.ac
\(29\) \( 1 + 4 T + 29 T^{2}\) 1.29.e
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 309680.t do not have complex multiplication.

Modular form 309680.2.a.t

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} - q^{5} - 2 q^{9} - q^{11} - 6 q^{13} + q^{15} + 3 q^{17} - q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 309680.t

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
309680.t1 309680t1 \([0, -1, 0, -37501, -2782975]\) \(-3952205824/395\) \(-582936677120\) \([]\) \(504000\) \(1.2919\) \(\Gamma_0(N)\)-optimal