Properties

Label 30912.ck
Number of curves $1$
Conductor $30912$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("ck1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 30912.ck1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(7\)\(1 + T\)
\(23\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - 3 T + 5 T^{2}\) 1.5.ad
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 - T + 13 T^{2}\) 1.13.ab
\(17\) \( 1 + 4 T + 17 T^{2}\) 1.17.e
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(29\) \( 1 + 5 T + 29 T^{2}\) 1.29.f
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 30912.ck do not have complex multiplication.

Modular form 30912.2.a.ck

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} + 3 q^{5} - q^{7} + q^{9} + q^{13} + 3 q^{15} - 4 q^{17} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 30912.ck

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
30912.ck1 30912x1 \([0, 1, 0, -1569, -34497]\) \(-3261064466/1917027\) \(-251268562944\) \([]\) \(38400\) \(0.89004\) \(\Gamma_0(N)\)-optimal