Properties

Label 30899.b
Number of curves $1$
Conductor $30899$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("b1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 30899.b1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(11\)\(1 + T\)
\(53\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 + 2 T + 2 T^{2}\) 1.2.c
\(3\) \( 1 + T + 3 T^{2}\) 1.3.b
\(5\) \( 1 + 3 T + 5 T^{2}\) 1.5.d
\(7\) \( 1 + 7 T^{2}\) 1.7.a
\(13\) \( 1 - 4 T + 13 T^{2}\) 1.13.ae
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 - 3 T + 23 T^{2}\) 1.23.ad
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 30899.b do not have complex multiplication.

Modular form 30899.2.a.b

Copy content sage:E.q_eigenform(10)
 
\(q - 2 q^{2} - q^{3} + 2 q^{4} - 3 q^{5} + 2 q^{6} - 2 q^{9} + 6 q^{10} - q^{11} - 2 q^{12} + 4 q^{13} + 3 q^{15} - 4 q^{16} + 4 q^{18} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 30899.b

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
30899.b1 30899a1 \([0, -1, 1, 15918, -999198]\) \(20123648/30899\) \(-684856594524971\) \([]\) \(134784\) \(1.5320\) \(\Gamma_0(N)\)-optimal