Properties

Label 308550.kd
Number of curves $4$
Conductor $308550$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("kd1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 308550.kd have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1 - T\)
\(5\)\(1\)
\(11\)\(1\)
\(17\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 - 4 T + 7 T^{2}\) 1.7.ae
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 308550.kd do not have complex multiplication.

Modular form 308550.2.a.kd

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} + q^{3} + q^{4} + q^{6} + 4 q^{7} + q^{8} + q^{9} + q^{12} - 2 q^{13} + 4 q^{14} + q^{16} + q^{17} + q^{18} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 308550.kd

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
308550.kd1 308550kd3 \([1, 0, 0, -5859488, 5059263342]\) \(803760366578833/65593817586\) \(1815678891819871031250\) \([2]\) \(23592960\) \(2.8219\)  
308550.kd2 308550kd2 \([1, 0, 0, -1231238, -434469408]\) \(7457162887153/1370924676\) \(37948073280300562500\) \([2, 2]\) \(11796480\) \(2.4754\)  
308550.kd3 308550kd1 \([1, 0, 0, -1170738, -487648908]\) \(6411014266033/296208\) \(8199227198250000\) \([2]\) \(5898240\) \(2.1288\) \(\Gamma_0(N)\)-optimal
308550.kd4 308550kd4 \([1, 0, 0, 2429012, -2524472158]\) \(57258048889007/132611470002\) \(-3670770443878330031250\) \([2]\) \(23592960\) \(2.8219\)