Properties

Label 3060.j
Number of curves $1$
Conductor $3060$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("j1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 3060.j1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1 - T\)
\(17\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + T + 7 T^{2}\) 1.7.b
\(11\) \( 1 + 3 T + 11 T^{2}\) 1.11.d
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(19\) \( 1 - T + 19 T^{2}\) 1.19.ab
\(23\) \( 1 - 2 T + 23 T^{2}\) 1.23.ac
\(29\) \( 1 + 5 T + 29 T^{2}\) 1.29.f
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 3060.j do not have complex multiplication.

Modular form 3060.2.a.j

Copy content sage:E.q_eigenform(10)
 
\(q + q^{5} - q^{7} - 3 q^{11} - 2 q^{13} + q^{17} + q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 3060.j

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
3060.j1 3060o1 \([0, 0, 0, -57, 2081]\) \(-1755904/159375\) \(-1858950000\) \([]\) \(960\) \(0.45820\) \(\Gamma_0(N)\)-optimal