Properties

Label 304704.g
Number of curves $2$
Conductor $304704$
CM \(\Q(\sqrt{-1}) \)
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("g1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 304704.g have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(23\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 4 T + 5 T^{2}\) 1.5.e
\(7\) \( 1 + 7 T^{2}\) 1.7.a
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 - 6 T + 13 T^{2}\) 1.13.ag
\(17\) \( 1 - 8 T + 17 T^{2}\) 1.17.ai
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(29\) \( 1 + 4 T + 29 T^{2}\) 1.29.e
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

Each elliptic curve in class 304704.g has complex multiplication by an order in the imaginary quadratic field \(\Q(\sqrt{-1}) \).

Modular form 304704.2.a.g

Copy content sage:E.q_eigenform(10)
 
\(q - 4 q^{5} + 6 q^{13} + 8 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 304704.g

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality CM discriminant
304704.g1 304704g1 \([0, 0, 0, -1587, 0]\) \(1728\) \(255806016192\) \([2]\) \(405504\) \(0.87844\) \(\Gamma_0(N)\)-optimal \(-4\)
304704.g2 304704g2 \([0, 0, 0, 6348, 0]\) \(1728\) \(-16371585036288\) \([2]\) \(811008\) \(1.2250\)   \(-4\)