Properties

Label 304704.eu
Number of curves $1$
Conductor $304704$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("eu1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 304704.eu1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(23\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - 2 T + 5 T^{2}\) 1.5.ac
\(7\) \( 1 + T + 7 T^{2}\) 1.7.b
\(11\) \( 1 + 5 T + 11 T^{2}\) 1.11.f
\(13\) \( 1 + 4 T + 13 T^{2}\) 1.13.e
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(29\) \( 1 + T + 29 T^{2}\) 1.29.b
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 304704.eu do not have complex multiplication.

Modular form 304704.2.a.eu

Copy content sage:E.q_eigenform(10)
 
\(q + 2 q^{5} - q^{7} - 5 q^{11} - 4 q^{13} + 2 q^{17} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 304704.eu

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
304704.eu1 304704eu1 \([0, 0, 0, -7087404, -7262378800]\) \(-778918741604594/27\) \(-1364761903104\) \([]\) \(4055040\) \(2.2754\) \(\Gamma_0(N)\)-optimal