Properties

Label 304704.dz
Number of curves $1$
Conductor $304704$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("dz1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 304704.dz1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(23\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - T + 5 T^{2}\) 1.5.ab
\(7\) \( 1 + 2 T + 7 T^{2}\) 1.7.c
\(11\) \( 1 - 4 T + 11 T^{2}\) 1.11.ae
\(13\) \( 1 - 3 T + 13 T^{2}\) 1.13.ad
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(19\) \( 1 - 2 T + 19 T^{2}\) 1.19.ac
\(29\) \( 1 - 5 T + 29 T^{2}\) 1.29.af
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 304704.dz do not have complex multiplication.

Modular form 304704.2.a.dz

Copy content sage:E.q_eigenform(10)
 
\(q + q^{5} - 2 q^{7} + 4 q^{11} + 3 q^{13} - 6 q^{17} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 304704.dz

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
304704.dz1 304704dz1 \([0, 0, 0, -1715547, -865268372]\) \(-152827456/81\) \(-295947863670897216\) \([]\) \(3956736\) \(2.3023\) \(\Gamma_0(N)\)-optimal