Properties

Label 304704.bk
Number of curves $4$
Conductor $304704$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bk1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 304704.bk have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(23\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 2 T + 5 T^{2}\) 1.5.c
\(7\) \( 1 + 7 T^{2}\) 1.7.a
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(19\) \( 1 - 8 T + 19 T^{2}\) 1.19.ai
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 304704.bk do not have complex multiplication.

Modular form 304704.2.a.bk

Copy content sage:E.q_eigenform(10)
 
\(q - 2 q^{5} + 2 q^{13} + 2 q^{17} + 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 304704.bk

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
304704.bk1 304704bk4 \([0, 0, 0, -75268236, -251303058160]\) \(1666957239793/301806\) \(8538121601502225629184\) \([2]\) \(25952256\) \(3.2118\)  
304704.bk2 304704bk3 \([0, 0, 0, -32609676, 69335742224]\) \(135559106353/5037138\) \(142501132408062522949632\) \([2]\) \(25952256\) \(3.2118\)  
304704.bk3 304704bk2 \([0, 0, 0, -5186316, -3072897520]\) \(545338513/171396\) \(4848809798383979986944\) \([2, 2]\) \(12976128\) \(2.8652\)  
304704.bk4 304704bk1 \([0, 0, 0, 907764, -325686256]\) \(2924207/3312\) \(-93696807698241159168\) \([2]\) \(6488064\) \(2.5186\) \(\Gamma_0(N)\)-optimal