Properties

Label 304704.do
Number of curves $2$
Conductor $304704$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("do1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 304704.do have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(23\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 5 T^{2}\) 1.5.a
\(7\) \( 1 - 2 T + 7 T^{2}\) 1.7.ac
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(17\) \( 1 - 8 T + 17 T^{2}\) 1.17.ai
\(19\) \( 1 - 6 T + 19 T^{2}\) 1.19.ag
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 304704.do do not have complex multiplication.

Modular form 304704.2.a.do

Copy content sage:E.q_eigenform(10)
 
\(q + 2 q^{7} - 2 q^{13} + 8 q^{17} + 6 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 304704.do

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
304704.do1 304704do2 \([0, 0, 0, -888370860, 10191533369776]\) \(10963069081334500/1156923\) \(8182366534772966227968\) \([2]\) \(60555264\) \(3.6329\)  
304704.do2 304704do1 \([0, 0, 0, -55386300, 160066910608]\) \(-10627137250000/110008287\) \(-194509082734222577614848\) \([2]\) \(30277632\) \(3.2864\) \(\Gamma_0(N)\)-optimal