Properties

Label 30420.y
Number of curves $1$
Conductor $30420$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("y1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 30420.y1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1 - T\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 - 3 T + 7 T^{2}\) 1.7.ad
\(11\) \( 1 + 6 T + 11 T^{2}\) 1.11.g
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 + 2 T + 23 T^{2}\) 1.23.c
\(29\) \( 1 + 8 T + 29 T^{2}\) 1.29.i
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 30420.y do not have complex multiplication.

Modular form 30420.2.a.y

Copy content sage:E.q_eigenform(10)
 
\(q + q^{5} + 3 q^{7} - 6 q^{11} - 6 q^{17} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 30420.y

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
30420.y1 30420u1 \([0, 0, 0, 52728, -2170636]\) \(106496/75\) \(-11417619755692800\) \([]\) \(239616\) \(1.7696\) \(\Gamma_0(N)\)-optimal