Properties

Label 30345z
Number of curves $1$
Conductor $30345$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("z1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 30345z1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1 - T\)
\(5\)\(1 + T\)
\(7\)\(1 + T\)
\(17\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 - T + 2 T^{2}\) 1.2.ab
\(11\) \( 1 + 4 T + 11 T^{2}\) 1.11.e
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 30345z do not have complex multiplication.

Modular form 30345.2.a.z

Copy content sage:E.q_eigenform(10)
 
\(q - 2 q^{2} + q^{3} + 2 q^{4} - q^{5} - 2 q^{6} + q^{7} + q^{9} + 2 q^{10} + 3 q^{11} + 2 q^{12} - 6 q^{13} - 2 q^{14} - q^{15} - 4 q^{16} - 2 q^{18} - q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 30345z

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
30345.b1 30345z1 \([0, 1, 1, -266, 1580]\) \(7229403136/19845\) \(5735205\) \([]\) \(12672\) \(0.17002\) \(\Gamma_0(N)\)-optimal